YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Objective Array Design: Application to the Tropical Indian Ocean

    Source: Journal of Atmospheric and Oceanic Technology:;2008:;volume( 025 ):;issue: 005::page 794
    Author:
    Sakov, Pavel
    ,
    Oke, Peter R.
    DOI: 10.1175/2007JTECHO553.1
    Publisher: American Meteorological Society
    Abstract: A simple, versatile, computationally efficient ensemble-based method for objectively designing an observation array is described. The method seeks to compute the observation array that minimizes the analysis error variance, according to Kalman filter theory. While most elements of the method have been described elsewhere, this paper attempts to present a simple, yet comprehensive, recipe for array design based on an ensemble of anomalies that represents the background error covariance. The versatility of the method is demonstrated through a series of applications to the tropical Indian Ocean (TIO). The first application uses model-generated fields of high-pass-filtered mixed layer depth to design an array to monitor intraseasonal variability. The second uses gridded observations of sea level anomaly to design an array to monitor intraseasonal-to-interannual variability. For both applications, the objectively designed arrays are compared to an array that will soon be implemented under the auspices of the Climate Variability and Predictability?Global Ocean Observing System (CLIVAR?GOOS) Indian Ocean Panel (CG-IOP). The authors conclude that the CG-IOP array produces results that compare well to the objectively designed arrays for intraseasonal variability, and observations to the east and northeast of the TIO and south of India are most important for resolving intraseasonal variability. The authors also find that observations near 9°S, where seasonal Rossby waves dominate, are important for observing seasonal-to-interannual variability. The described method for objective array design can be applied to a wide range of geophysical applications where time series of gridded modeled or observed fields are available.
    • Download: (1.219Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Objective Array Design: Application to the Tropical Indian Ocean

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207488
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorSakov, Pavel
    contributor authorOke, Peter R.
    date accessioned2017-06-09T16:20:45Z
    date available2017-06-09T16:20:45Z
    date copyright2008/05/01
    date issued2008
    identifier issn0739-0572
    identifier otherams-66181.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207488
    description abstractA simple, versatile, computationally efficient ensemble-based method for objectively designing an observation array is described. The method seeks to compute the observation array that minimizes the analysis error variance, according to Kalman filter theory. While most elements of the method have been described elsewhere, this paper attempts to present a simple, yet comprehensive, recipe for array design based on an ensemble of anomalies that represents the background error covariance. The versatility of the method is demonstrated through a series of applications to the tropical Indian Ocean (TIO). The first application uses model-generated fields of high-pass-filtered mixed layer depth to design an array to monitor intraseasonal variability. The second uses gridded observations of sea level anomaly to design an array to monitor intraseasonal-to-interannual variability. For both applications, the objectively designed arrays are compared to an array that will soon be implemented under the auspices of the Climate Variability and Predictability?Global Ocean Observing System (CLIVAR?GOOS) Indian Ocean Panel (CG-IOP). The authors conclude that the CG-IOP array produces results that compare well to the objectively designed arrays for intraseasonal variability, and observations to the east and northeast of the TIO and south of India are most important for resolving intraseasonal variability. The authors also find that observations near 9°S, where seasonal Rossby waves dominate, are important for observing seasonal-to-interannual variability. The described method for objective array design can be applied to a wide range of geophysical applications where time series of gridded modeled or observed fields are available.
    publisherAmerican Meteorological Society
    titleObjective Array Design: Application to the Tropical Indian Ocean
    typeJournal Paper
    journal volume25
    journal issue5
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/2007JTECHO553.1
    journal fristpage794
    journal lastpage807
    treeJournal of Atmospheric and Oceanic Technology:;2008:;volume( 025 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian