YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance and Uncertainty of CNR1 Net Radiometers during a One-Year Field Comparison

    Source: Journal of Atmospheric and Oceanic Technology:;2008:;volume( 025 ):;issue: 003::page 442
    Author:
    Michel, Dominik
    ,
    Philipona, Rolf
    ,
    Ruckstuhl, Christian
    ,
    Vogt, Roland
    ,
    Vuilleumier, Laurent
    DOI: 10.1175/2007JTECHA973.1
    Publisher: American Meteorological Society
    Abstract: Net radiation flux in correlation with surface energy budget, snowmelt, glacier ice balance, and forest or agricultural flux exchange investigations is measured in numerous field experiments. Instrument costs and energy consumption versus performance and uncertainty of net radiation instruments has been widely discussed. Here the authors analyze and show performance and uncertainty of two Kipp and Zonen CNR1 net radiometers, which were compared to high standard reference radiation instruments measuring individual shortwave and longwave downward and upward flux components. The intercomparison was aimed at investigating the performance of the radiometers under different climatological conditions and was made over one year at the midlatitude Baseline Surface Radiation Network (BSRN) station in Payerne, Switzerland (490 MSL). Of the two CNR1 radiometers tested, one was installed in a ventilation and heating system, whereas the other was mounted without ventilation and heating. Uncertainties of the different flux components were found to be larger for shortwave than longwave radiation and larger for downward than upward components. Using the single sensitivity coefficient provided by the manufacturer, which for CNR1 radiometers conditions using all four sensors, rather large root-mean-square differences between 2 and 14 W m?2 were measured for the individual components for hourly averages and between 2 and 12 W m?2 for daily averages. The authors then performed a field calibration, comparing each individual sensor to the reference instrument for one particular day. With the individual field calibration the uncertainty of hourly averages was reduced significantly for all components of the ventilated and heated instrument. For the unventilated CNR1 uncertainties could not be reduced significantly for all sensors. The total net radiation uncertainty of both CNR1 is rather large with up to 26% on daily averages (?10 W m?2) for the original sensitivity coefficients and without field calibration. Only with the field calibration and for the ventilated and heated CNR1 net radiometer is an uncertainty of 10% of the daily totals of total net radiation reached, as claimed by the manufacturer.
    • Download: (1.158Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance and Uncertainty of CNR1 Net Radiometers during a One-Year Field Comparison

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207447
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorMichel, Dominik
    contributor authorPhilipona, Rolf
    contributor authorRuckstuhl, Christian
    contributor authorVogt, Roland
    contributor authorVuilleumier, Laurent
    date accessioned2017-06-09T16:20:39Z
    date available2017-06-09T16:20:39Z
    date copyright2008/03/01
    date issued2008
    identifier issn0739-0572
    identifier otherams-66143.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207447
    description abstractNet radiation flux in correlation with surface energy budget, snowmelt, glacier ice balance, and forest or agricultural flux exchange investigations is measured in numerous field experiments. Instrument costs and energy consumption versus performance and uncertainty of net radiation instruments has been widely discussed. Here the authors analyze and show performance and uncertainty of two Kipp and Zonen CNR1 net radiometers, which were compared to high standard reference radiation instruments measuring individual shortwave and longwave downward and upward flux components. The intercomparison was aimed at investigating the performance of the radiometers under different climatological conditions and was made over one year at the midlatitude Baseline Surface Radiation Network (BSRN) station in Payerne, Switzerland (490 MSL). Of the two CNR1 radiometers tested, one was installed in a ventilation and heating system, whereas the other was mounted without ventilation and heating. Uncertainties of the different flux components were found to be larger for shortwave than longwave radiation and larger for downward than upward components. Using the single sensitivity coefficient provided by the manufacturer, which for CNR1 radiometers conditions using all four sensors, rather large root-mean-square differences between 2 and 14 W m?2 were measured for the individual components for hourly averages and between 2 and 12 W m?2 for daily averages. The authors then performed a field calibration, comparing each individual sensor to the reference instrument for one particular day. With the individual field calibration the uncertainty of hourly averages was reduced significantly for all components of the ventilated and heated instrument. For the unventilated CNR1 uncertainties could not be reduced significantly for all sensors. The total net radiation uncertainty of both CNR1 is rather large with up to 26% on daily averages (?10 W m?2) for the original sensitivity coefficients and without field calibration. Only with the field calibration and for the ventilated and heated CNR1 net radiometer is an uncertainty of 10% of the daily totals of total net radiation reached, as claimed by the manufacturer.
    publisherAmerican Meteorological Society
    titlePerformance and Uncertainty of CNR1 Net Radiometers during a One-Year Field Comparison
    typeJournal Paper
    journal volume25
    journal issue3
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/2007JTECHA973.1
    journal fristpage442
    journal lastpage451
    treeJournal of Atmospheric and Oceanic Technology:;2008:;volume( 025 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian