YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Microphysical Retrievals from Dual-Polarization Radar Measurements at X Band

    Source: Journal of Atmospheric and Oceanic Technology:;2008:;volume( 025 ):;issue: 005::page 729
    Author:
    Gorgucci, Eugenio
    ,
    Chandrasekar, V.
    ,
    Baldini, Luca
    DOI: 10.1175/2007JTECHA971.1
    Publisher: American Meteorological Society
    Abstract: The recent advances in attenuation correction methodology are based on the use of a constraint represented by the total amount of the attenuation encountered along the path shared over each range bin in the path. This technique is improved by using the inner self-consistency of radar measurements. The full self-consistency methodology provides an optimization procedure for obtaining the best estimate of specific and cumulative attenuation and specific and cumulative differential attenuation. The main goal of the study is to examine drop size distribution (DSD) retrieval from X-band radar measurements after attenuation correction. A new technique for estimating the slope of a linear axis ratio model from polarimetric radar measurements at attenuated frequencies is envisioned. A new set of improved algorithms immune to variability in the raindrop shape?size relation are presented for the estimation of the governing parameters characterizing a gamma raindrop size distribution. Simulations based on the use of profiles of gamma drop size distribution parameters obtained from S-band observations are used for quantitative analysis. Radar data collected by the NOAA/Earth System Research Laboratory (ESRL) X-band polarimetric radar are used to provide examples of the DSD parameter retrievals using attenuation-corrected radar measurements. Retrievals agree fairly well with disdrometer data. The radar data are also used to observe the prevailing shape of raindrops directly from the radar measurements. A significant result is that oblateness of drops is bounded between the two shape models of Pruppacher and Beard, and Beard and Chuang, the former representing the upper boundary and the latter the lower boundary.
    • Download: (1.138Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Microphysical Retrievals from Dual-Polarization Radar Measurements at X Band

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207444
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorGorgucci, Eugenio
    contributor authorChandrasekar, V.
    contributor authorBaldini, Luca
    date accessioned2017-06-09T16:20:39Z
    date available2017-06-09T16:20:39Z
    date copyright2008/05/01
    date issued2008
    identifier issn0739-0572
    identifier otherams-66141.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207444
    description abstractThe recent advances in attenuation correction methodology are based on the use of a constraint represented by the total amount of the attenuation encountered along the path shared over each range bin in the path. This technique is improved by using the inner self-consistency of radar measurements. The full self-consistency methodology provides an optimization procedure for obtaining the best estimate of specific and cumulative attenuation and specific and cumulative differential attenuation. The main goal of the study is to examine drop size distribution (DSD) retrieval from X-band radar measurements after attenuation correction. A new technique for estimating the slope of a linear axis ratio model from polarimetric radar measurements at attenuated frequencies is envisioned. A new set of improved algorithms immune to variability in the raindrop shape?size relation are presented for the estimation of the governing parameters characterizing a gamma raindrop size distribution. Simulations based on the use of profiles of gamma drop size distribution parameters obtained from S-band observations are used for quantitative analysis. Radar data collected by the NOAA/Earth System Research Laboratory (ESRL) X-band polarimetric radar are used to provide examples of the DSD parameter retrievals using attenuation-corrected radar measurements. Retrievals agree fairly well with disdrometer data. The radar data are also used to observe the prevailing shape of raindrops directly from the radar measurements. A significant result is that oblateness of drops is bounded between the two shape models of Pruppacher and Beard, and Beard and Chuang, the former representing the upper boundary and the latter the lower boundary.
    publisherAmerican Meteorological Society
    titleMicrophysical Retrievals from Dual-Polarization Radar Measurements at X Band
    typeJournal Paper
    journal volume25
    journal issue5
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/2007JTECHA971.1
    journal fristpage729
    journal lastpage741
    treeJournal of Atmospheric and Oceanic Technology:;2008:;volume( 025 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian