YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulated Doppler Radar Observations of Inhomogeneous Clouds: Application to the EarthCARE Space Mission

    Source: Journal of Atmospheric and Oceanic Technology:;2008:;volume( 025 ):;issue: 001::page 26
    Author:
    Schutgens, N. A. J.
    DOI: 10.1175/2007JTECHA956.1
    Publisher: American Meteorological Society
    Abstract: A new simulation technique for spaceborne Doppler radar observations that was developed specifically for inhomogeneous targets is presented. Cloud inhomogeneity affects Doppler observations in two ways. First, line-of-sight velocities within the instantaneous field of view are unequally weighted. As the large forward motion of a spaceborne radar contributes to these line-of-sight velocities this causes biases in observed Doppler speeds. Second, receiver voltages now have time-varying stochastical properties, increasing the inaccuracy of Doppler observations. The new technique predicts larger inaccuracies of observed Doppler speeds than the traditional random signal simulations based on the inverse Fourier transform. The accuracy of Doppler speed observations by a spaceborne 95-GHz radar [as part of the proposed European Space Agency (ESA)/Japan Aerospace Exploration Agency (JAXA)/National Institute for Information and Communications Technology (NICT) EarthCARE mission] is assessed through simulations for realistic cloud scenes based on observations made by ground-based cloud-profiling radars. Close to lateral cloud boundary biases as large as several meters per second occur. For half of the cloud scenes investigated, the distribution of the in-cloud bias has an rms of 0.5 m s?1, implying that a bias in excess of 0.5 m s?1 will not be uncommon. An algorithm to correct the bias in observed Doppler observations, based on the observed gradient of reflectivity along track, is suggested and shown to be effective; that is, the aforementioned rms bias reduces to 0.14 m s?1.
    • Download: (1.557Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulated Doppler Radar Observations of Inhomogeneous Clouds: Application to the EarthCARE Space Mission

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207432
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorSchutgens, N. A. J.
    date accessioned2017-06-09T16:20:37Z
    date available2017-06-09T16:20:37Z
    date copyright2008/01/01
    date issued2008
    identifier issn0739-0572
    identifier otherams-66130.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207432
    description abstractA new simulation technique for spaceborne Doppler radar observations that was developed specifically for inhomogeneous targets is presented. Cloud inhomogeneity affects Doppler observations in two ways. First, line-of-sight velocities within the instantaneous field of view are unequally weighted. As the large forward motion of a spaceborne radar contributes to these line-of-sight velocities this causes biases in observed Doppler speeds. Second, receiver voltages now have time-varying stochastical properties, increasing the inaccuracy of Doppler observations. The new technique predicts larger inaccuracies of observed Doppler speeds than the traditional random signal simulations based on the inverse Fourier transform. The accuracy of Doppler speed observations by a spaceborne 95-GHz radar [as part of the proposed European Space Agency (ESA)/Japan Aerospace Exploration Agency (JAXA)/National Institute for Information and Communications Technology (NICT) EarthCARE mission] is assessed through simulations for realistic cloud scenes based on observations made by ground-based cloud-profiling radars. Close to lateral cloud boundary biases as large as several meters per second occur. For half of the cloud scenes investigated, the distribution of the in-cloud bias has an rms of 0.5 m s?1, implying that a bias in excess of 0.5 m s?1 will not be uncommon. An algorithm to correct the bias in observed Doppler observations, based on the observed gradient of reflectivity along track, is suggested and shown to be effective; that is, the aforementioned rms bias reduces to 0.14 m s?1.
    publisherAmerican Meteorological Society
    titleSimulated Doppler Radar Observations of Inhomogeneous Clouds: Application to the EarthCARE Space Mission
    typeJournal Paper
    journal volume25
    journal issue1
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/2007JTECHA956.1
    journal fristpage26
    journal lastpage42
    treeJournal of Atmospheric and Oceanic Technology:;2008:;volume( 025 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian