YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Atmospheric and Oceanic Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Detection of Fog and Low Cloud Boundaries with Ground-Based Remote Sensing Systems

    Source: Journal of Atmospheric and Oceanic Technology:;2008:;volume( 025 ):;issue: 008::page 1357
    Author:
    Nowak, Daniela
    ,
    Ruffieux, Dominique
    ,
    Agnew, Judith L.
    ,
    Vuilleumier, Laurent
    DOI: 10.1175/2007JTECHA950.1
    Publisher: American Meteorological Society
    Abstract: The performance of the boundary determination of fog and low stratiform cloud layers with data from a frequency-modulated continuous-wave (FMCW) cloud radar and a Vaisala ceilometer is assessed. During wintertime stable episodes, fog and low stratiform cloud layers often occur in the Swiss Plateau, where the aerological station of Payerne, Switzerland, is located. During the international COST 720 Temperature, Humidity, and Cloud (TUC) profiling experiment in winter 2003/04, both a cloud radar and a ceilometer were operated in parallel, among other profiling instruments. Human eye observations (?synops?) and temperature and humidity profiles from radiosoundings were used as reference for the validation. In addition, two case studies were chosen to demonstrate the possibilities and limitations of such ground-based remote sensing systems in determining low clouds. In these case studies the cloud boundaries determined by ceilometer and cloud radar were furthermore compared with wind profiler signal-to-noise ratio time series. Under dry conditions, cloud-base and -top detection was possible in 59% and 69% of the cases for low stratus clouds and fog situations, respectively. When cases with any form of precipitation were included, performances were reduced with detection rates of 41% and 63%, respectively. The combination of ceilometer and cloud radar has the potential for providing the base and top of a cloud layer with optimal efficiency in the continuous operational mode. The cloud-top height determination by the cloud radar was compared with cloud-top heights detected using radiosounding humidity profiles. The average height difference between the radiosounding and cloud radar determination of the cloud upper boundary is 53 ± 32 m.
    • Download: (1.136Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Detection of Fog and Low Cloud Boundaries with Ground-Based Remote Sensing Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207427
    Collections
    • Journal of Atmospheric and Oceanic Technology

    Show full item record

    contributor authorNowak, Daniela
    contributor authorRuffieux, Dominique
    contributor authorAgnew, Judith L.
    contributor authorVuilleumier, Laurent
    date accessioned2017-06-09T16:20:36Z
    date available2017-06-09T16:20:36Z
    date copyright2008/08/01
    date issued2008
    identifier issn0739-0572
    identifier otherams-66125.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207427
    description abstractThe performance of the boundary determination of fog and low stratiform cloud layers with data from a frequency-modulated continuous-wave (FMCW) cloud radar and a Vaisala ceilometer is assessed. During wintertime stable episodes, fog and low stratiform cloud layers often occur in the Swiss Plateau, where the aerological station of Payerne, Switzerland, is located. During the international COST 720 Temperature, Humidity, and Cloud (TUC) profiling experiment in winter 2003/04, both a cloud radar and a ceilometer were operated in parallel, among other profiling instruments. Human eye observations (?synops?) and temperature and humidity profiles from radiosoundings were used as reference for the validation. In addition, two case studies were chosen to demonstrate the possibilities and limitations of such ground-based remote sensing systems in determining low clouds. In these case studies the cloud boundaries determined by ceilometer and cloud radar were furthermore compared with wind profiler signal-to-noise ratio time series. Under dry conditions, cloud-base and -top detection was possible in 59% and 69% of the cases for low stratus clouds and fog situations, respectively. When cases with any form of precipitation were included, performances were reduced with detection rates of 41% and 63%, respectively. The combination of ceilometer and cloud radar has the potential for providing the base and top of a cloud layer with optimal efficiency in the continuous operational mode. The cloud-top height determination by the cloud radar was compared with cloud-top heights detected using radiosounding humidity profiles. The average height difference between the radiosounding and cloud radar determination of the cloud upper boundary is 53 ± 32 m.
    publisherAmerican Meteorological Society
    titleDetection of Fog and Low Cloud Boundaries with Ground-Based Remote Sensing Systems
    typeJournal Paper
    journal volume25
    journal issue8
    journal titleJournal of Atmospheric and Oceanic Technology
    identifier doi10.1175/2007JTECHA950.1
    journal fristpage1357
    journal lastpage1368
    treeJournal of Atmospheric and Oceanic Technology:;2008:;volume( 025 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian