YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vorticity and Divergence of Surface Velocities Near Shore

    Source: Journal of Physical Oceanography:;2008:;Volume( 038 ):;issue: 007::page 1450
    Author:
    Smith, Jerome A.
    DOI: 10.1175/2007JPO3865.1
    Publisher: American Meteorological Society
    Abstract: The nearshore environment is complex, with many competing dynamical elements. Surface waves and edge waves (a form of surface wave trapped to the shore) can generally be separated from other forms of motion because of their fast propagation speeds. However, other motions such as internal waves, shear waves, density flows, and isolated vortex pairs can move at comparable speeds. A tool to help separate these dynamical elements is decomposition of the surface 2D flow into two parts, one nondivergent and the other irrotational (solenoidal and potential flows, respectively). Here, an efficient algorithm for this separation is developed and applied, and two examples are examined from data taken at Duck, North Carolina, in 1997 as part of the SandyDuck experiment. The first example is a fresher-water density flow propagating downcoast (probably from the Chesapeake Bay). It is seen that 1) the wave-driven alongshore flow leads the flow, generating a ?surge? of offshore surface flow in its wake; 2) the isolation of the irrotational (2D divergent) part of the flow permits estimates of some dynamical characteristics of the flow; and 3) the nondivergent part of the flow indicates a meander in the alongshore flow that moves downcoast with the surge. The second example is a hypothesized form of isolated vortical structure, such as might be generated by a pulsed rip current that detaches from the shore and bottom and coasts offshore some distance before dissipating. A kinematically self-consistent structure is formulated that would have both divergence and vorticity fields associated with it. However, the observations inspiring the hypothesis are inconclusive, so the existence of such a structure has not been verified.
    • Download: (2.646Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vorticity and Divergence of Surface Velocities Near Shore

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207360
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorSmith, Jerome A.
    date accessioned2017-06-09T16:20:26Z
    date available2017-06-09T16:20:26Z
    date copyright2008/07/01
    date issued2008
    identifier issn0022-3670
    identifier otherams-66065.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207360
    description abstractThe nearshore environment is complex, with many competing dynamical elements. Surface waves and edge waves (a form of surface wave trapped to the shore) can generally be separated from other forms of motion because of their fast propagation speeds. However, other motions such as internal waves, shear waves, density flows, and isolated vortex pairs can move at comparable speeds. A tool to help separate these dynamical elements is decomposition of the surface 2D flow into two parts, one nondivergent and the other irrotational (solenoidal and potential flows, respectively). Here, an efficient algorithm for this separation is developed and applied, and two examples are examined from data taken at Duck, North Carolina, in 1997 as part of the SandyDuck experiment. The first example is a fresher-water density flow propagating downcoast (probably from the Chesapeake Bay). It is seen that 1) the wave-driven alongshore flow leads the flow, generating a ?surge? of offshore surface flow in its wake; 2) the isolation of the irrotational (2D divergent) part of the flow permits estimates of some dynamical characteristics of the flow; and 3) the nondivergent part of the flow indicates a meander in the alongshore flow that moves downcoast with the surge. The second example is a hypothesized form of isolated vortical structure, such as might be generated by a pulsed rip current that detaches from the shore and bottom and coasts offshore some distance before dissipating. A kinematically self-consistent structure is formulated that would have both divergence and vorticity fields associated with it. However, the observations inspiring the hypothesis are inconclusive, so the existence of such a structure has not been verified.
    publisherAmerican Meteorological Society
    titleVorticity and Divergence of Surface Velocities Near Shore
    typeJournal Paper
    journal volume38
    journal issue7
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2007JPO3865.1
    journal fristpage1450
    journal lastpage1468
    treeJournal of Physical Oceanography:;2008:;Volume( 038 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian