YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulations of the North American Monsoon System. Part I: Model Analysis of the 1993 Monsoon Season

    Source: Journal of Climate:;2004:;volume( 017 ):;issue: 010::page 1997
    Author:
    Saleeby, Stephen M.
    ,
    Cotton, William R.
    DOI: 10.1175/1520-0442(2004)017<1997:SOTNAM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The North American monsoon system is known to produce significant summertime precipitation on the west coast of Mexico and the southwestern United States, with some areas receiving greater than 50% of their yearly rainfall between the months of July and September. The onset of the monsoon is attributed to a shift in the large-scale upper-level anticyclonic flow over the central United States, and the associated increases in moisture flux and resulting precipitation are tied to the low-level jets from the Gulf of California and the Gulf of Mexico. Individual monsoon surge events vary in intensity, as does the magnitude of the diurnal cycle of the low-level jets and precipitation. Numerical modeling and forecasting of these interacting large-and mesoscale monsoon features is often difficult in terms of accurately recreating the varying flow regimes aloft and near the surface and over both the flat and steep terrain that are encompassed within the monsoon region of influence. The Regional Atmospheric Modeling System (RAMS) at Colorado State University has been utilized to investigate seasonal monsoon simulations for the 1988 (United States drought), 1993 (Midwest flood), and 1997 (El Niño year) monsoon seasons. In Part I of this paper the credibility of RAMS, as far as its ability to reproduce observed features of the North American monsoon system, is evaluated. Part II provides interseasonal comparisons of model-simulated monsoon features from the three simulated extreme seasons and results of sensitivity studies to SSTs and soil moisture variability. Part III presents the development of potential vorticity anomalies associated with convection over Mexico and their downstream influence over the central United States.
    • Download: (10.17Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulations of the North American Monsoon System. Part I: Model Analysis of the 1993 Monsoon Season

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207334
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSaleeby, Stephen M.
    contributor authorCotton, William R.
    date accessioned2017-06-09T16:20:22Z
    date available2017-06-09T16:20:22Z
    date copyright2004/05/01
    date issued2004
    identifier issn0894-8755
    identifier otherams-6604.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207334
    description abstractThe North American monsoon system is known to produce significant summertime precipitation on the west coast of Mexico and the southwestern United States, with some areas receiving greater than 50% of their yearly rainfall between the months of July and September. The onset of the monsoon is attributed to a shift in the large-scale upper-level anticyclonic flow over the central United States, and the associated increases in moisture flux and resulting precipitation are tied to the low-level jets from the Gulf of California and the Gulf of Mexico. Individual monsoon surge events vary in intensity, as does the magnitude of the diurnal cycle of the low-level jets and precipitation. Numerical modeling and forecasting of these interacting large-and mesoscale monsoon features is often difficult in terms of accurately recreating the varying flow regimes aloft and near the surface and over both the flat and steep terrain that are encompassed within the monsoon region of influence. The Regional Atmospheric Modeling System (RAMS) at Colorado State University has been utilized to investigate seasonal monsoon simulations for the 1988 (United States drought), 1993 (Midwest flood), and 1997 (El Niño year) monsoon seasons. In Part I of this paper the credibility of RAMS, as far as its ability to reproduce observed features of the North American monsoon system, is evaluated. Part II provides interseasonal comparisons of model-simulated monsoon features from the three simulated extreme seasons and results of sensitivity studies to SSTs and soil moisture variability. Part III presents the development of potential vorticity anomalies associated with convection over Mexico and their downstream influence over the central United States.
    publisherAmerican Meteorological Society
    titleSimulations of the North American Monsoon System. Part I: Model Analysis of the 1993 Monsoon Season
    typeJournal Paper
    journal volume17
    journal issue10
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2004)017<1997:SOTNAM>2.0.CO;2
    journal fristpage1997
    journal lastpage2018
    treeJournal of Climate:;2004:;volume( 017 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian