YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Instabilities of a Baroclinic, Double Diffusive Frontal Zone

    Source: Journal of Physical Oceanography:;2008:;Volume( 038 ):;issue: 004::page 840
    Author:
    Smyth, W. D.
    DOI: 10.1175/2007JPO3770.1
    Publisher: American Meteorological Society
    Abstract: The linear theory of double diffusive interleaving is extended to take account of baroclinic effects. This study goes beyond previous studies by including the possibility of modes with nonzero tilt in the alongfront direction, which allows for advection by the baroclinic frontal flow. This requires that the stability equations be solved numerically. The main example is based on observations of interleaving on the lower flank of Meddy Sharon, but a range of parameter values is covered, leading to conclusions that are relevant in a variety of oceanic regimes. The frontal zone is treated as infinitely wide with uniform gradients of temperature, salinity, and alongfront velocity. The stationary, vertically symmetric interleaving mode is shown to have maximum growth rate when its alongfront wavenumber is zero, providing validation for previous studies in which this property was assumed. Besides this, there exist two additional modes of instability: the ageostrophic Eady mode of baroclinic instability and a mode not previously identified. The new mode is oblique (i.e., it tilts in the alongfront direction), vertically asymmetric, and propagating. It is strongly dependent on boundary conditions, and its relevance in the ocean interior is uncertain as a result. Effects of variable diffusivity and buoyancy flux ratio are also considered.
    • Download: (2.206Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Instabilities of a Baroclinic, Double Diffusive Frontal Zone

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207320
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorSmyth, W. D.
    date accessioned2017-06-09T16:20:20Z
    date available2017-06-09T16:20:20Z
    date copyright2008/04/01
    date issued2008
    identifier issn0022-3670
    identifier otherams-66029.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207320
    description abstractThe linear theory of double diffusive interleaving is extended to take account of baroclinic effects. This study goes beyond previous studies by including the possibility of modes with nonzero tilt in the alongfront direction, which allows for advection by the baroclinic frontal flow. This requires that the stability equations be solved numerically. The main example is based on observations of interleaving on the lower flank of Meddy Sharon, but a range of parameter values is covered, leading to conclusions that are relevant in a variety of oceanic regimes. The frontal zone is treated as infinitely wide with uniform gradients of temperature, salinity, and alongfront velocity. The stationary, vertically symmetric interleaving mode is shown to have maximum growth rate when its alongfront wavenumber is zero, providing validation for previous studies in which this property was assumed. Besides this, there exist two additional modes of instability: the ageostrophic Eady mode of baroclinic instability and a mode not previously identified. The new mode is oblique (i.e., it tilts in the alongfront direction), vertically asymmetric, and propagating. It is strongly dependent on boundary conditions, and its relevance in the ocean interior is uncertain as a result. Effects of variable diffusivity and buoyancy flux ratio are also considered.
    publisherAmerican Meteorological Society
    titleInstabilities of a Baroclinic, Double Diffusive Frontal Zone
    typeJournal Paper
    journal volume38
    journal issue4
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2007JPO3770.1
    journal fristpage840
    journal lastpage861
    treeJournal of Physical Oceanography:;2008:;Volume( 038 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian