YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Monte Carlo Experiments on the Detection of Trends in Extreme Values

    Source: Journal of Climate:;2004:;volume( 017 ):;issue: 010::page 1945
    Author:
    Zhang, Xuebin
    ,
    Zwiers, Francis W.
    ,
    Li, Guilong
    DOI: 10.1175/1520-0442(2004)017<1945:MCEOTD>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Using Monte Carlo simulations, several methods for detecting a trend in the magnitude of extreme values are compared. Ordinary least squares regression is found to be the least reliable method. A Kendall's tau?based method provides some improvement. The advantage of this method over that of least squares diminishes when the sample size is moderate to small. Explicit consideration of the extreme value distribution when computing trend always outperforms the above two methods. The use of the r largest values as extremes enhances the power of detection for moderate values of r; the use of larger values of r may lead to bias in the magnitude of the estimated trend.
    • Download: (243.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Monte Carlo Experiments on the Detection of Trends in Extreme Values

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207290
    Collections
    • Journal of Climate

    Show full item record

    contributor authorZhang, Xuebin
    contributor authorZwiers, Francis W.
    contributor authorLi, Guilong
    date accessioned2017-06-09T16:20:13Z
    date available2017-06-09T16:20:13Z
    date copyright2004/05/01
    date issued2004
    identifier issn0894-8755
    identifier otherams-6600.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207290
    description abstractUsing Monte Carlo simulations, several methods for detecting a trend in the magnitude of extreme values are compared. Ordinary least squares regression is found to be the least reliable method. A Kendall's tau?based method provides some improvement. The advantage of this method over that of least squares diminishes when the sample size is moderate to small. Explicit consideration of the extreme value distribution when computing trend always outperforms the above two methods. The use of the r largest values as extremes enhances the power of detection for moderate values of r; the use of larger values of r may lead to bias in the magnitude of the estimated trend.
    publisherAmerican Meteorological Society
    titleMonte Carlo Experiments on the Detection of Trends in Extreme Values
    typeJournal Paper
    journal volume17
    journal issue10
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2004)017<1945:MCEOTD>2.0.CO;2
    journal fristpage1945
    journal lastpage1952
    treeJournal of Climate:;2004:;volume( 017 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian