YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Observational Evidence of Winter Spice Injection

    Source: Journal of Physical Oceanography:;2007:;Volume( 037 ):;issue: 012::page 2895
    Author:
    Yeager, Stephen G.
    ,
    Large, William G.
    DOI: 10.1175/2007JPO3629.1
    Publisher: American Meteorological Society
    Abstract: Temperature and salinity (T?S) profiles from the global array of Argo floats support the existence of spice-formation regions in the subtropics of each ocean basin where large, destabilizing vertical salinity gradients coincide with weak stratification in winter. In these characteristic regions, convective boundary layer mixing generates a strongly density-compensated (SDC) layer at the base of the well-mixed layer. The degree of density compensation of the T?S gradients of an upper-ocean water column is quantified using a bulk vertical Turner angle (Tub) between the surface and upper pycnocline. The winter generation of the SDC layer in spice-formation zones is clearly seen in Argo data as a large-amplitude seasonal cycle of Tub in regions of the subtropical oceans characterized by high mean Tub. In formation regions, Argo floats provide ample evidence of large, abrupt spice injection (T?S increase on subducted isopycnals due to vertical mixing) associated with the winter increase in Tub. A simple conceptual model of the spice-injection mechanism is presented that is based on known behavior of convective boundary layers and supported by numerical model results. It suggests that penetrative convective mixing of a partially density-compensated water column will enhance the Turner angle within a transition layer between the mixed layer and the upper pycnocline, generating seasonal T?S increases on density surfaces below the mixed layer. Observations are consistent with this hypothesis. In OGCMs, regions showing high Tub mean and seasonal amplitude are also the sources of significant interannual spice variability in the permanent pycnocline. Decadal changes in the North Pacific of a model hindcast simulation show qualitative resemblance to the observed multiyear time series from the Hawaii Ocean Time series (HOT) station ALOHA. Modeled pycnocline variations near Hawaii can be linked to high Tub seasonality and winter spice injection within a formation region upstream of ALOHA, suggesting that spice injection may explain the origins of observed large, interannual variations on isopycnals in the ocean interior.
    • Download: (3.045Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Observational Evidence of Winter Spice Injection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207257
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorYeager, Stephen G.
    contributor authorLarge, William G.
    date accessioned2017-06-09T16:20:09Z
    date available2017-06-09T16:20:09Z
    date copyright2007/12/01
    date issued2007
    identifier issn0022-3670
    identifier otherams-65973.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207257
    description abstractTemperature and salinity (T?S) profiles from the global array of Argo floats support the existence of spice-formation regions in the subtropics of each ocean basin where large, destabilizing vertical salinity gradients coincide with weak stratification in winter. In these characteristic regions, convective boundary layer mixing generates a strongly density-compensated (SDC) layer at the base of the well-mixed layer. The degree of density compensation of the T?S gradients of an upper-ocean water column is quantified using a bulk vertical Turner angle (Tub) between the surface and upper pycnocline. The winter generation of the SDC layer in spice-formation zones is clearly seen in Argo data as a large-amplitude seasonal cycle of Tub in regions of the subtropical oceans characterized by high mean Tub. In formation regions, Argo floats provide ample evidence of large, abrupt spice injection (T?S increase on subducted isopycnals due to vertical mixing) associated with the winter increase in Tub. A simple conceptual model of the spice-injection mechanism is presented that is based on known behavior of convective boundary layers and supported by numerical model results. It suggests that penetrative convective mixing of a partially density-compensated water column will enhance the Turner angle within a transition layer between the mixed layer and the upper pycnocline, generating seasonal T?S increases on density surfaces below the mixed layer. Observations are consistent with this hypothesis. In OGCMs, regions showing high Tub mean and seasonal amplitude are also the sources of significant interannual spice variability in the permanent pycnocline. Decadal changes in the North Pacific of a model hindcast simulation show qualitative resemblance to the observed multiyear time series from the Hawaii Ocean Time series (HOT) station ALOHA. Modeled pycnocline variations near Hawaii can be linked to high Tub seasonality and winter spice injection within a formation region upstream of ALOHA, suggesting that spice injection may explain the origins of observed large, interannual variations on isopycnals in the ocean interior.
    publisherAmerican Meteorological Society
    titleObservational Evidence of Winter Spice Injection
    typeJournal Paper
    journal volume37
    journal issue12
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/2007JPO3629.1
    journal fristpage2895
    journal lastpage2919
    treeJournal of Physical Oceanography:;2007:;Volume( 037 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian