YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Spatial Aggregation of Initial Conditions and Forcing Data on Modeling Snowmelt Using a Land Surface Scheme

    Source: Journal of Hydrometeorology:;2008:;Volume( 009 ):;issue: 004::page 789
    Author:
    Dornes, Pablo F.
    ,
    Pomeroy, John W.
    ,
    Pietroniro, Alain
    ,
    Verseghy, Diana L.
    DOI: 10.1175/2007JHM958.1
    Publisher: American Meteorological Society
    Abstract: Small-scale topography and snow redistribution have important effects on snow-cover heterogeneity and the timing, rate, and duration of spring snowmelt in mountain tundra environments. However, land surface schemes (LSSs) are usually applied as a means to provide large-scale surface states and vertical fluxes to atmospheric models and do not normally incorporate topographic effects or horizontal fluxes in their calculations A study was conducted in Granger Creek, an 8-km2 catchment within Wolf Creek Research Basin in the Yukon Territory, Canada, to examine whether inclusion of the effects of wind redistribution of snow between landscape units, and slope and aspect in snowmelt calculations for tiles, could improve the simulation of snowmelt by an LSS. Measured snow accumulation, reflecting overwinter wind redistribution of snow, was used to provide initial conditions for the melt simulation, and physically based algorithms from a small-scale hydrological model were used to calculate radiation on slopes during melt. Based on consideration of the spatial distribution of snow accumulation, topography, and shrub cover in the basin, it was divided into five landscapes units (tiles) for simulation of mass and energy balance using an LSS during melt. Effects of averaging initial conditions and forcing data on LSS model performance were contrasted against distributed simulations. Results showed that, in most of the cases, simulations using aggregated initial conditions and forcing data gave unsuccessful descriptions of snow ablation whereas the incorporation of both snow-cover redistribution and slope and aspect effects in an LSS improved the prediction of snowmelt rate, timing, and duration.
    • Download: (1.380Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Spatial Aggregation of Initial Conditions and Forcing Data on Modeling Snowmelt Using a Land Surface Scheme

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207227
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorDornes, Pablo F.
    contributor authorPomeroy, John W.
    contributor authorPietroniro, Alain
    contributor authorVerseghy, Diana L.
    date accessioned2017-06-09T16:20:04Z
    date available2017-06-09T16:20:04Z
    date copyright2008/08/01
    date issued2008
    identifier issn1525-755X
    identifier otherams-65946.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207227
    description abstractSmall-scale topography and snow redistribution have important effects on snow-cover heterogeneity and the timing, rate, and duration of spring snowmelt in mountain tundra environments. However, land surface schemes (LSSs) are usually applied as a means to provide large-scale surface states and vertical fluxes to atmospheric models and do not normally incorporate topographic effects or horizontal fluxes in their calculations A study was conducted in Granger Creek, an 8-km2 catchment within Wolf Creek Research Basin in the Yukon Territory, Canada, to examine whether inclusion of the effects of wind redistribution of snow between landscape units, and slope and aspect in snowmelt calculations for tiles, could improve the simulation of snowmelt by an LSS. Measured snow accumulation, reflecting overwinter wind redistribution of snow, was used to provide initial conditions for the melt simulation, and physically based algorithms from a small-scale hydrological model were used to calculate radiation on slopes during melt. Based on consideration of the spatial distribution of snow accumulation, topography, and shrub cover in the basin, it was divided into five landscapes units (tiles) for simulation of mass and energy balance using an LSS during melt. Effects of averaging initial conditions and forcing data on LSS model performance were contrasted against distributed simulations. Results showed that, in most of the cases, simulations using aggregated initial conditions and forcing data gave unsuccessful descriptions of snow ablation whereas the incorporation of both snow-cover redistribution and slope and aspect effects in an LSS improved the prediction of snowmelt rate, timing, and duration.
    publisherAmerican Meteorological Society
    titleEffects of Spatial Aggregation of Initial Conditions and Forcing Data on Modeling Snowmelt Using a Land Surface Scheme
    typeJournal Paper
    journal volume9
    journal issue4
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/2007JHM958.1
    journal fristpage789
    journal lastpage803
    treeJournal of Hydrometeorology:;2008:;Volume( 009 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian