YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Satellite Rainfall Uncertainty Estimation Using an Artificial Neural Network

    Source: Journal of Hydrometeorology:;2007:;Volume( 008 ):;issue: 006::page 1397
    Author:
    Bellerby, T. J.
    DOI: 10.1175/2007JHM846.1
    Publisher: American Meteorological Society
    Abstract: This paper describes a neural network?based approach to estimate the conditional distribution function (cdf) of rainfall with respect to multidimensional satellite-derived input data. The methodology [Conditional Histogram of Precipitation (CHIP)] employs a histogram-based approximation of the cdf. In addition to the conditional expected rainfall rate, it provides conditional probabilities for that rate falling within each of a fixed set of intervals or bins. A test algorithm based on the CHIP approach was calibrated against Goddard profiling algorithm (GPROF) rainfall data for June?August 2002 and then used to produce a 30-min, 0.5° rainfall product from global (60°N?60°S) composite geostationary thermal infrared imagery for June?August 2003. Estimated rainfall rates and conditional probabilities were validated against 2003 GPROF data. The CHIP methodology provides the means to extend existing probabilistic and ensemble satellite rainfall error models, conditioned on a single, scalar, satellite rainfall predictor or upon scalar rainfall-rate outputs, to make full use of multidimensional input data.
    • Download: (1.584Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Satellite Rainfall Uncertainty Estimation Using an Artificial Neural Network

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207191
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorBellerby, T. J.
    date accessioned2017-06-09T16:19:58Z
    date available2017-06-09T16:19:58Z
    date copyright2007/12/01
    date issued2007
    identifier issn1525-755X
    identifier otherams-65913.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207191
    description abstractThis paper describes a neural network?based approach to estimate the conditional distribution function (cdf) of rainfall with respect to multidimensional satellite-derived input data. The methodology [Conditional Histogram of Precipitation (CHIP)] employs a histogram-based approximation of the cdf. In addition to the conditional expected rainfall rate, it provides conditional probabilities for that rate falling within each of a fixed set of intervals or bins. A test algorithm based on the CHIP approach was calibrated against Goddard profiling algorithm (GPROF) rainfall data for June?August 2002 and then used to produce a 30-min, 0.5° rainfall product from global (60°N?60°S) composite geostationary thermal infrared imagery for June?August 2003. Estimated rainfall rates and conditional probabilities were validated against 2003 GPROF data. The CHIP methodology provides the means to extend existing probabilistic and ensemble satellite rainfall error models, conditioned on a single, scalar, satellite rainfall predictor or upon scalar rainfall-rate outputs, to make full use of multidimensional input data.
    publisherAmerican Meteorological Society
    titleSatellite Rainfall Uncertainty Estimation Using an Artificial Neural Network
    typeJournal Paper
    journal volume8
    journal issue6
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/2007JHM846.1
    journal fristpage1397
    journal lastpage1412
    treeJournal of Hydrometeorology:;2007:;Volume( 008 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian