YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Land Data Assimilation System for Soil Moisture and Temperature: An Information Content Study

    Source: Journal of Hydrometeorology:;2007:;Volume( 008 ):;issue: 006::page 1225
    Author:
    Balsamo, G.
    ,
    Mahfouf, J-F.
    ,
    Bélair, S.
    ,
    Deblonde, G.
    DOI: 10.1175/2007JHM819.1
    Publisher: American Meteorological Society
    Abstract: A Canadian Land Data Assimilation System (CaLDAS) for the analysis of land surface prognostic variables is designed and implemented at the Meteorological Service of Canada for the initialization of numerical weather prediction and climate models. The assimilation of different data sources for the production of daily soil moisture and temperature analyses is investigated in a set of observing system simulation experiments over North America. A simplified variational technique is adapted to accommodate different observation types at their appropriate time in a 24-h time window. The screen-level observations of temperature and relative humidity, from conventional synoptic surface observations (SYNOP)/aviation routine weather report (METAR)/surface aviation observation (SA) reports, are considered together with presently available satellite observations provided by the Aqua satellite (microwave C-band), Geostationary Operational Environmental Satellite (GOES) [infrared (IR)], and observations available in the future by the Soil Moisture and Ocean Salinity (SMOS) satellite mission (microwave L-band). The aim of these experiments is to assess the information content brought by each observation type in the land surface analysis. The observation systems are simulated according to their spatial coverage, temporal availability, and nominal or expected errors. The results show that the observable with the largest dynamical response to perturbations of the control variable carries the greatest information content into the analysis. The observational error and the observation frequency counterbalance this feature in the analysis. If one considers a single observation both for soil moisture and soil temperature analysis, then satellite measurements (L-band, C-band, and IR in decreasing order of importance) are the primary source of information. When observation availability is considered and the highest temporal frequency of screen-level observations is used (1 h), a large amount of information is extracted from SYNOP-like reports. The screen-level observations are shown to provide valuable soil moisture information mainly during the daytime, while during nighttime these observations (and particularly screen-level temperature) are mostly useful for the soil temperature analysis. The results are presented with perspectives for future operational developments and preliminary assimilation experiments are performed with hourly screen-level observations.
    • Download: (2.894Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Land Data Assimilation System for Soil Moisture and Temperature: An Information Content Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207182
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorBalsamo, G.
    contributor authorMahfouf, J-F.
    contributor authorBélair, S.
    contributor authorDeblonde, G.
    date accessioned2017-06-09T16:19:57Z
    date available2017-06-09T16:19:57Z
    date copyright2007/12/01
    date issued2007
    identifier issn1525-755X
    identifier otherams-65905.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207182
    description abstractA Canadian Land Data Assimilation System (CaLDAS) for the analysis of land surface prognostic variables is designed and implemented at the Meteorological Service of Canada for the initialization of numerical weather prediction and climate models. The assimilation of different data sources for the production of daily soil moisture and temperature analyses is investigated in a set of observing system simulation experiments over North America. A simplified variational technique is adapted to accommodate different observation types at their appropriate time in a 24-h time window. The screen-level observations of temperature and relative humidity, from conventional synoptic surface observations (SYNOP)/aviation routine weather report (METAR)/surface aviation observation (SA) reports, are considered together with presently available satellite observations provided by the Aqua satellite (microwave C-band), Geostationary Operational Environmental Satellite (GOES) [infrared (IR)], and observations available in the future by the Soil Moisture and Ocean Salinity (SMOS) satellite mission (microwave L-band). The aim of these experiments is to assess the information content brought by each observation type in the land surface analysis. The observation systems are simulated according to their spatial coverage, temporal availability, and nominal or expected errors. The results show that the observable with the largest dynamical response to perturbations of the control variable carries the greatest information content into the analysis. The observational error and the observation frequency counterbalance this feature in the analysis. If one considers a single observation both for soil moisture and soil temperature analysis, then satellite measurements (L-band, C-band, and IR in decreasing order of importance) are the primary source of information. When observation availability is considered and the highest temporal frequency of screen-level observations is used (1 h), a large amount of information is extracted from SYNOP-like reports. The screen-level observations are shown to provide valuable soil moisture information mainly during the daytime, while during nighttime these observations (and particularly screen-level temperature) are mostly useful for the soil temperature analysis. The results are presented with perspectives for future operational developments and preliminary assimilation experiments are performed with hourly screen-level observations.
    publisherAmerican Meteorological Society
    titleA Land Data Assimilation System for Soil Moisture and Temperature: An Information Content Study
    typeJournal Paper
    journal volume8
    journal issue6
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/2007JHM819.1
    journal fristpage1225
    journal lastpage1242
    treeJournal of Hydrometeorology:;2007:;Volume( 008 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian