YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Eddy Heat Flux in the Southern Ocean: Response to Variable Wind Forcing

    Source: Journal of Climate:;2008:;volume( 021 ):;issue: 004::page 608
    Author:
    Hogg, Andrew Mc C.
    ,
    Meredith, Michael P.
    ,
    Blundell, Jeffrey R.
    ,
    Wilson, Chris
    DOI: 10.1175/2007JCLI1925.1
    Publisher: American Meteorological Society
    Abstract: The authors assess the role of time-dependent eddy variability in the Antarctic Circumpolar Current (ACC) in influencing warming of the Southern Ocean. For this, an eddy-resolving quasigeostrophic model of the wind-driven circulation is used, and the response of circumpolar transport, eddy kinetic energy, and eddy heat transport to changes in winds is quantified. On interannual time scales, the model exhibits the behavior of an ?eddy saturated? ocean state, where increases in wind stress do not significantly change the circumpolar transport, but instead enhance the eddy field. This is in accord with previous dynamical arguments, and a recent observational study. The instantaneous response to increased wind stress is to cool temperatures through increased northward Ekman transport of cool water. But, in the longer term, the enhanced eddy state is more efficient at transporting heat, leading to a warming of the ocean. The total eddy heat flux response is greater than the Ekman transport heat flux in this model by a factor of 2, indicating that coarse (non eddy resolving) models may fail to adequately capture the key processes. The authors also test the model response to long-term changes in wind forcing, including steadily increasing circumpolar wind strength over a 30-yr period. The model shows a response in eddy heat flux, and a change in ocean temperature not dissimilar from observed Southern Ocean warming. These findings suggest that eddy heat flux, energized by increasing wind stress, may be a significant contributor to the observed warming of the Southern Ocean.
    • Download: (1.405Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Eddy Heat Flux in the Southern Ocean: Response to Variable Wind Forcing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207094
    Collections
    • Journal of Climate

    Show full item record

    contributor authorHogg, Andrew Mc C.
    contributor authorMeredith, Michael P.
    contributor authorBlundell, Jeffrey R.
    contributor authorWilson, Chris
    date accessioned2017-06-09T16:19:40Z
    date available2017-06-09T16:19:40Z
    date copyright2008/02/01
    date issued2008
    identifier issn0894-8755
    identifier otherams-65826.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207094
    description abstractThe authors assess the role of time-dependent eddy variability in the Antarctic Circumpolar Current (ACC) in influencing warming of the Southern Ocean. For this, an eddy-resolving quasigeostrophic model of the wind-driven circulation is used, and the response of circumpolar transport, eddy kinetic energy, and eddy heat transport to changes in winds is quantified. On interannual time scales, the model exhibits the behavior of an ?eddy saturated? ocean state, where increases in wind stress do not significantly change the circumpolar transport, but instead enhance the eddy field. This is in accord with previous dynamical arguments, and a recent observational study. The instantaneous response to increased wind stress is to cool temperatures through increased northward Ekman transport of cool water. But, in the longer term, the enhanced eddy state is more efficient at transporting heat, leading to a warming of the ocean. The total eddy heat flux response is greater than the Ekman transport heat flux in this model by a factor of 2, indicating that coarse (non eddy resolving) models may fail to adequately capture the key processes. The authors also test the model response to long-term changes in wind forcing, including steadily increasing circumpolar wind strength over a 30-yr period. The model shows a response in eddy heat flux, and a change in ocean temperature not dissimilar from observed Southern Ocean warming. These findings suggest that eddy heat flux, energized by increasing wind stress, may be a significant contributor to the observed warming of the Southern Ocean.
    publisherAmerican Meteorological Society
    titleEddy Heat Flux in the Southern Ocean: Response to Variable Wind Forcing
    typeJournal Paper
    journal volume21
    journal issue4
    journal titleJournal of Climate
    identifier doi10.1175/2007JCLI1925.1
    journal fristpage608
    journal lastpage620
    treeJournal of Climate:;2008:;volume( 021 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian