YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Black Carbon Aerosols on the Indian Monsoon

    Source: Journal of Climate:;2008:;volume( 021 ):;issue: 012::page 2869
    Author:
    Meehl, Gerald A.
    ,
    Arblaster, Julie M.
    ,
    Collins, William D.
    DOI: 10.1175/2007JCLI1777.1
    Publisher: American Meteorological Society
    Abstract: A six-member ensemble of twentieth-century simulations with changes to only time-evolving global distributions of black carbon aerosols in a global coupled climate model is analyzed to study the effects of black carbon (BC) aerosols on the Indian monsoon. The BC aerosols act to increase lower-tropospheric heating over South Asia and reduce the amount of solar radiation reaching the surface during the dry season, as noted in previous studies. The increased meridional tropospheric temperature gradient in the premonsoon months of March?April?May (MAM), particularly between the elevated heat source of the Tibetan Plateau and areas to the south, contributes to enhanced precipitation over India in those months. With the onset of the monsoon, the reduced surface temperatures in the Bay of Bengal, Arabian Sea, and over India that extend to the Himalayas act to reduce monsoon rainfall over India itself, with some small increases over the Tibetan Plateau. Precipitation over China generally decreases due to the BC aerosol effects. There is a weakened latitudinal SST gradient resulting from BC aerosols in the model simulations as seen in the observations, and this is present in the multiple-forcings experiments with the Community Climate System Model, version 3 (CCSM3), which includes natural and anthropogenic forcings (including BC aerosols). The BC aerosols and consequent weakened latitudinal SST gradient in those experiments are associated with increased precipitation during MAM in northern India and over the Tibetan Plateau, with some decreased precipitation over southwest India, the Bay of Bengal, Burma, Thailand, and Malaysia, as seen in observations. During the summer monsoon season, the model experiments show that BC aerosols have likely contributed to observed decreasing precipitation trends over parts of India, Bangladesh, Burma, and Thailand. Analysis of single ensemble members from the multiple-forcings experiment suggests that the observed increasing precipitation trends over southern China appear to be associated with natural variability connected to surface temperature changes in the northwest Pacific.
    • Download: (3.978Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Black Carbon Aerosols on the Indian Monsoon

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4207021
    Collections
    • Journal of Climate

    Show full item record

    contributor authorMeehl, Gerald A.
    contributor authorArblaster, Julie M.
    contributor authorCollins, William D.
    date accessioned2017-06-09T16:19:27Z
    date available2017-06-09T16:19:27Z
    date copyright2008/06/01
    date issued2008
    identifier issn0894-8755
    identifier otherams-65761.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4207021
    description abstractA six-member ensemble of twentieth-century simulations with changes to only time-evolving global distributions of black carbon aerosols in a global coupled climate model is analyzed to study the effects of black carbon (BC) aerosols on the Indian monsoon. The BC aerosols act to increase lower-tropospheric heating over South Asia and reduce the amount of solar radiation reaching the surface during the dry season, as noted in previous studies. The increased meridional tropospheric temperature gradient in the premonsoon months of March?April?May (MAM), particularly between the elevated heat source of the Tibetan Plateau and areas to the south, contributes to enhanced precipitation over India in those months. With the onset of the monsoon, the reduced surface temperatures in the Bay of Bengal, Arabian Sea, and over India that extend to the Himalayas act to reduce monsoon rainfall over India itself, with some small increases over the Tibetan Plateau. Precipitation over China generally decreases due to the BC aerosol effects. There is a weakened latitudinal SST gradient resulting from BC aerosols in the model simulations as seen in the observations, and this is present in the multiple-forcings experiments with the Community Climate System Model, version 3 (CCSM3), which includes natural and anthropogenic forcings (including BC aerosols). The BC aerosols and consequent weakened latitudinal SST gradient in those experiments are associated with increased precipitation during MAM in northern India and over the Tibetan Plateau, with some decreased precipitation over southwest India, the Bay of Bengal, Burma, Thailand, and Malaysia, as seen in observations. During the summer monsoon season, the model experiments show that BC aerosols have likely contributed to observed decreasing precipitation trends over parts of India, Bangladesh, Burma, and Thailand. Analysis of single ensemble members from the multiple-forcings experiment suggests that the observed increasing precipitation trends over southern China appear to be associated with natural variability connected to surface temperature changes in the northwest Pacific.
    publisherAmerican Meteorological Society
    titleEffects of Black Carbon Aerosols on the Indian Monsoon
    typeJournal Paper
    journal volume21
    journal issue12
    journal titleJournal of Climate
    identifier doi10.1175/2007JCLI1777.1
    journal fristpage2869
    journal lastpage2882
    treeJournal of Climate:;2008:;volume( 021 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian