The Relationship between the Southern Hemisphere Annular Mode and Antarctic Peninsula Summer Temperatures: Analysis of a High-Resolution Model ClimatologySource: Journal of Climate:;2008:;volume( 021 ):;issue: 008::page 1649DOI: 10.1175/2007JCLI1695.1Publisher: American Meteorological Society
Abstract: The large regional summer warming on the east coast of the northern Antarctic Peninsula (AP), which has taken place since the mid-1960s, has previously been proposed to be caused by a trend in the Southern Hemisphere Annular Mode (SAM). The authors utilize a high-resolution regional atmospheric model climatology (14-km grid spacing) to study the mechanisms that determine the response of the near-surface temperature to an increase in the SAM (?T/?SAM). Month-to-month variations in near-surface temperature and surface pressure are well represented by the model. It is found that north of ?68°S, ?T/?SAM is much larger on the eastern (lee) side than on the western (windward) side of the barrier. This is because of the enhanced westerly flow of relatively warm air over the barrier, which warms (and dries) further as it descends down the lee slope. The downward motion on the eastern side of the barrier causes a decrease in surface-mass balance and cloud cover. South of ?68°S, vertical deflection across the barrier is greatly reduced and the contrast in ?T/?SAM between the east and west sides of the barrier vanishes. In the northeastern part of the AP, the modeled ?T/?SAM distribution is similar to the distribution derived from satellite infrared radiometer data. The region of strongest modeled temperature sensitivity to the SAM is where ice shelf collapse has recently taken place and does not extend farther south over the Larsen-C Ice Shelf.
|
Collections
Show full item record
| contributor author | van Lipzig, Nicole P. M. | |
| contributor author | Marshall, Gareth J. | |
| contributor author | Orr, Andrew | |
| contributor author | King, John C. | |
| date accessioned | 2017-06-09T16:19:20Z | |
| date available | 2017-06-09T16:19:20Z | |
| date copyright | 2008/04/01 | |
| date issued | 2008 | |
| identifier issn | 0894-8755 | |
| identifier other | ams-65721.pdf | |
| identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4206977 | |
| description abstract | The large regional summer warming on the east coast of the northern Antarctic Peninsula (AP), which has taken place since the mid-1960s, has previously been proposed to be caused by a trend in the Southern Hemisphere Annular Mode (SAM). The authors utilize a high-resolution regional atmospheric model climatology (14-km grid spacing) to study the mechanisms that determine the response of the near-surface temperature to an increase in the SAM (?T/?SAM). Month-to-month variations in near-surface temperature and surface pressure are well represented by the model. It is found that north of ?68°S, ?T/?SAM is much larger on the eastern (lee) side than on the western (windward) side of the barrier. This is because of the enhanced westerly flow of relatively warm air over the barrier, which warms (and dries) further as it descends down the lee slope. The downward motion on the eastern side of the barrier causes a decrease in surface-mass balance and cloud cover. South of ?68°S, vertical deflection across the barrier is greatly reduced and the contrast in ?T/?SAM between the east and west sides of the barrier vanishes. In the northeastern part of the AP, the modeled ?T/?SAM distribution is similar to the distribution derived from satellite infrared radiometer data. The region of strongest modeled temperature sensitivity to the SAM is where ice shelf collapse has recently taken place and does not extend farther south over the Larsen-C Ice Shelf. | |
| publisher | American Meteorological Society | |
| title | The Relationship between the Southern Hemisphere Annular Mode and Antarctic Peninsula Summer Temperatures: Analysis of a High-Resolution Model Climatology | |
| type | Journal Paper | |
| journal volume | 21 | |
| journal issue | 8 | |
| journal title | Journal of Climate | |
| identifier doi | 10.1175/2007JCLI1695.1 | |
| journal fristpage | 1649 | |
| journal lastpage | 1668 | |
| tree | Journal of Climate:;2008:;volume( 021 ):;issue: 008 | |
| contenttype | Fulltext |