YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Role of the Atmospheric and Oceanic Circulation in the Tropical Pacific SST Changes

    Source: Journal of Climate:;2008:;volume( 021 ):;issue: 010::page 2019
    Author:
    Su, Jingzhi
    ,
    Wang, Huijun
    ,
    Yang, Haijun
    ,
    Drange, Helge
    ,
    Gao, Yongqi
    ,
    Bentsen, Mats
    DOI: 10.1175/2007JCLI1692.1
    Publisher: American Meteorological Society
    Abstract: A coupled climate model is used to explore the response of the tropical sea surface temperature (SST) to positive SST anomalies in the global extratropics. The main model results here are consistent with previous numerical studies. In response to prescribed SST anomalies in the extratropics, the tropical SSTs rise rapidly and reach a quasi-equilibrium state within several years, and the tropical subsurface temperatures show a slow response. The annual-mean Hadley cell, as well as the surface trades, are weakened. The weakened trades reduce the poleward Ekman transports in the tropical ocean and, furthermore, lead to anomalous positive convergences of heat transport, which is the main mechanism for maintaining the tropical Pacific SST warming. The process of an extratropical influence on the tropics is related to both the atmospheric and oceanic circulations. The intertropical convergence zone (ITCZ) moves southward and eastward in the Pacific, corresponding to a reduction of the Hadley circulation and Walker circulation. At the same time, convective precipitation anomalies are formed on the boundary of the climatological ITCZ, while the climatological mean convections centered in the Southeast Asia region are suppressed. The largely delayed response of the tropical subsurface temperature cannot be explained only by the strength change of the subtropical cells (STCs), but can be traced back to the slow changing of subsurface temperature in the extratropics. In the extratropical oceans, warming and freshening reduce the surface water density, and the outcropping lines of certain isopycnal layers are moved poleward. This poleward movement of outcropping lines can weaken the positive temperature anomalies, or even lead to negative anomalies, on given isopycnal layers. Displayed on time-dependent isopycnal layers, positive subsurface temperature anomalies are present only in the region after subduction, and are subsequently replaced by negative temperature anomalies in the deep tropics regions. The noticeable features of the density compensation of temperature and salinity indicate that diapycnal processes play an important role in the equatorward transport of the temperature and salinity anomalies from the midlatitude.
    • Download: (2.277Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Role of the Atmospheric and Oceanic Circulation in the Tropical Pacific SST Changes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206974
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSu, Jingzhi
    contributor authorWang, Huijun
    contributor authorYang, Haijun
    contributor authorDrange, Helge
    contributor authorGao, Yongqi
    contributor authorBentsen, Mats
    date accessioned2017-06-09T16:19:20Z
    date available2017-06-09T16:19:20Z
    date copyright2008/05/01
    date issued2008
    identifier issn0894-8755
    identifier otherams-65718.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206974
    description abstractA coupled climate model is used to explore the response of the tropical sea surface temperature (SST) to positive SST anomalies in the global extratropics. The main model results here are consistent with previous numerical studies. In response to prescribed SST anomalies in the extratropics, the tropical SSTs rise rapidly and reach a quasi-equilibrium state within several years, and the tropical subsurface temperatures show a slow response. The annual-mean Hadley cell, as well as the surface trades, are weakened. The weakened trades reduce the poleward Ekman transports in the tropical ocean and, furthermore, lead to anomalous positive convergences of heat transport, which is the main mechanism for maintaining the tropical Pacific SST warming. The process of an extratropical influence on the tropics is related to both the atmospheric and oceanic circulations. The intertropical convergence zone (ITCZ) moves southward and eastward in the Pacific, corresponding to a reduction of the Hadley circulation and Walker circulation. At the same time, convective precipitation anomalies are formed on the boundary of the climatological ITCZ, while the climatological mean convections centered in the Southeast Asia region are suppressed. The largely delayed response of the tropical subsurface temperature cannot be explained only by the strength change of the subtropical cells (STCs), but can be traced back to the slow changing of subsurface temperature in the extratropics. In the extratropical oceans, warming and freshening reduce the surface water density, and the outcropping lines of certain isopycnal layers are moved poleward. This poleward movement of outcropping lines can weaken the positive temperature anomalies, or even lead to negative anomalies, on given isopycnal layers. Displayed on time-dependent isopycnal layers, positive subsurface temperature anomalies are present only in the region after subduction, and are subsequently replaced by negative temperature anomalies in the deep tropics regions. The noticeable features of the density compensation of temperature and salinity indicate that diapycnal processes play an important role in the equatorward transport of the temperature and salinity anomalies from the midlatitude.
    publisherAmerican Meteorological Society
    titleRole of the Atmospheric and Oceanic Circulation in the Tropical Pacific SST Changes
    typeJournal Paper
    journal volume21
    journal issue10
    journal titleJournal of Climate
    identifier doi10.1175/2007JCLI1692.1
    journal fristpage2019
    journal lastpage2034
    treeJournal of Climate:;2008:;volume( 021 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian