YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Roles of Atmospheric Stochastic Forcing (SF) and Oceanic Entrainment Temperature (Te) in Decadal Modulation of ENSO

    Source: Journal of Climate:;2008:;volume( 021 ):;issue: 004::page 674
    Author:
    Zhang, Rong-Hua
    ,
    Busalacchi, Antonio J.
    ,
    DeWitt, David G.
    DOI: 10.1175/2007JCLI1665.1
    Publisher: American Meteorological Society
    Abstract: The El Niño?Southern Oscillation (ENSO) has been observed to exhibit decadal changes in its properties; the cause and implication of such changes are strongly debated. Here the authors examine the influences of two particular attributors of the ocean?atmospheric system. The roles of stochastic forcing (SF) in the atmosphere and decadal changes in the temperature of subsurface water entrained into the mixed layer (Te) in modulating ENSO are compared to one another using coupled ocean?atmosphere models of the tropical Pacific climate system. Two types of coupled models are used. One is an intermediate coupled model (ICM) and another is a hybrid coupled model (HCM), both of which consist of the same intermediate ocean model (IOM) with an empirical parameterization for Te, constructed via singular value decomposition (SVD) analysis of the IOM simulated historical data. The differences in the ICM and HCM are in the atmospheric component: the one in the ICM is an empirical feedback model for wind stress (τ), and that in the HCM is an atmospheric general circulation model (AGCM; ECHAM4.5). The deterministic component of atmospheric τ variability, representing its signal response (τSig) to an external SST forcing, is constructed statistically by an SVD analysis from a 24-member ensemble mean of the ECHAM4.5 AGCM simulations forced by observed SST; the SF component (τSF) is explicitly estimated from the ECHAM4.5 AGCM ensemble and HCM simulations. Different SF representations are specified in the atmosphere: the SF effect can be either absent or present explicitly in the ICM, or implicitly in the HCM where the ECHAM4.5 AGCM is used as a source for SF. Decadal changes in the ocean thermal structure observed in the late 1970s are incorporated into the coupled systems through the Te parameterizations for the two subperiods before (1963?79) and after (1980?96) the climate shift (T63?79e and T80?96e), respectively. The ICM and HCM simulations well reproduce interannual variability associated with El Niño in the tropical Pacific. Model sensitivity experiments are performed using these two types of coupled models with different realizations of SF in the atmosphere and specifications of decadal Te changes in the ocean. It is demonstrated that the properties of ENSO are modulated differently by these two factors. The decadal Te changes in the ocean can be responsible for a systematic shift in the phase propagation of ENSO, while the SF in the atmosphere can contribute to the amplitude and period modulation in a random way. The relevance to the observed decadal ENSO variability in the late 1970s is discussed.
    • Download: (6.456Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Roles of Atmospheric Stochastic Forcing (SF) and Oceanic Entrainment Temperature (Te) in Decadal Modulation of ENSO

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206963
    Collections
    • Journal of Climate

    Show full item record

    contributor authorZhang, Rong-Hua
    contributor authorBusalacchi, Antonio J.
    contributor authorDeWitt, David G.
    date accessioned2017-06-09T16:19:18Z
    date available2017-06-09T16:19:18Z
    date copyright2008/02/01
    date issued2008
    identifier issn0894-8755
    identifier otherams-65708.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206963
    description abstractThe El Niño?Southern Oscillation (ENSO) has been observed to exhibit decadal changes in its properties; the cause and implication of such changes are strongly debated. Here the authors examine the influences of two particular attributors of the ocean?atmospheric system. The roles of stochastic forcing (SF) in the atmosphere and decadal changes in the temperature of subsurface water entrained into the mixed layer (Te) in modulating ENSO are compared to one another using coupled ocean?atmosphere models of the tropical Pacific climate system. Two types of coupled models are used. One is an intermediate coupled model (ICM) and another is a hybrid coupled model (HCM), both of which consist of the same intermediate ocean model (IOM) with an empirical parameterization for Te, constructed via singular value decomposition (SVD) analysis of the IOM simulated historical data. The differences in the ICM and HCM are in the atmospheric component: the one in the ICM is an empirical feedback model for wind stress (τ), and that in the HCM is an atmospheric general circulation model (AGCM; ECHAM4.5). The deterministic component of atmospheric τ variability, representing its signal response (τSig) to an external SST forcing, is constructed statistically by an SVD analysis from a 24-member ensemble mean of the ECHAM4.5 AGCM simulations forced by observed SST; the SF component (τSF) is explicitly estimated from the ECHAM4.5 AGCM ensemble and HCM simulations. Different SF representations are specified in the atmosphere: the SF effect can be either absent or present explicitly in the ICM, or implicitly in the HCM where the ECHAM4.5 AGCM is used as a source for SF. Decadal changes in the ocean thermal structure observed in the late 1970s are incorporated into the coupled systems through the Te parameterizations for the two subperiods before (1963?79) and after (1980?96) the climate shift (T63?79e and T80?96e), respectively. The ICM and HCM simulations well reproduce interannual variability associated with El Niño in the tropical Pacific. Model sensitivity experiments are performed using these two types of coupled models with different realizations of SF in the atmosphere and specifications of decadal Te changes in the ocean. It is demonstrated that the properties of ENSO are modulated differently by these two factors. The decadal Te changes in the ocean can be responsible for a systematic shift in the phase propagation of ENSO, while the SF in the atmosphere can contribute to the amplitude and period modulation in a random way. The relevance to the observed decadal ENSO variability in the late 1970s is discussed.
    publisherAmerican Meteorological Society
    titleThe Roles of Atmospheric Stochastic Forcing (SF) and Oceanic Entrainment Temperature (Te) in Decadal Modulation of ENSO
    typeJournal Paper
    journal volume21
    journal issue4
    journal titleJournal of Climate
    identifier doi10.1175/2007JCLI1665.1
    journal fristpage674
    journal lastpage704
    treeJournal of Climate:;2008:;volume( 021 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian