YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Dynamic Response of the Winter Stratosphere to an Equable Climate Surface Temperature Gradient

    Source: Journal of Climate:;2007:;volume( 020 ):;issue: 021::page 5213
    Author:
    Korty, Robert L.
    ,
    Emanuel, Kerry A.
    DOI: 10.1175/2007JCLI1556.1
    Publisher: American Meteorological Society
    Abstract: This work investigates the dynamic and thermal response of the winter stratosphere to the presence of a weak meridional surface temperature gradient. Previous work suggested that polar stratospheric clouds could have played a decisive role in maintaining high-latitude warmth, especially over continental interiors, during the polar nights of the late Paleocene and early Eocene epochs; both a chemical source of additional water vapor and a dynamical feedback between the surface climate and stratospheric temperatures have been proposed as mechanisms by which such clouds could form. A principal goal of this work is to investigate the latter problem using a general circulation model with stratospheric resolution that is forced with a very weak surface temperature gradient. It is found that temperatures in the lower stratosphere do not deviate significantly from the control run, which results from a robust flux of wave activity into the winter stratosphere. The strength of the stratosphere?s residual circulation increases slightly in the presence of the weak gradient, as wavenumber 3 begins to propagate to stratospheric altitudes. Changes in the zonal wind field that allow for the altered propagation are in balance with a weakened temperature gradient through the full depth of the troposphere. These simulations also suggest that the tropospheric thermal stratification could be maintained by moist convection at all latitudes in warm climate states with a weak temperature gradient.
    • Download: (1.351Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Dynamic Response of the Winter Stratosphere to an Equable Climate Surface Temperature Gradient

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206917
    Collections
    • Journal of Climate

    Show full item record

    contributor authorKorty, Robert L.
    contributor authorEmanuel, Kerry A.
    date accessioned2017-06-09T16:19:11Z
    date available2017-06-09T16:19:11Z
    date copyright2007/11/01
    date issued2007
    identifier issn0894-8755
    identifier otherams-65667.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206917
    description abstractThis work investigates the dynamic and thermal response of the winter stratosphere to the presence of a weak meridional surface temperature gradient. Previous work suggested that polar stratospheric clouds could have played a decisive role in maintaining high-latitude warmth, especially over continental interiors, during the polar nights of the late Paleocene and early Eocene epochs; both a chemical source of additional water vapor and a dynamical feedback between the surface climate and stratospheric temperatures have been proposed as mechanisms by which such clouds could form. A principal goal of this work is to investigate the latter problem using a general circulation model with stratospheric resolution that is forced with a very weak surface temperature gradient. It is found that temperatures in the lower stratosphere do not deviate significantly from the control run, which results from a robust flux of wave activity into the winter stratosphere. The strength of the stratosphere?s residual circulation increases slightly in the presence of the weak gradient, as wavenumber 3 begins to propagate to stratospheric altitudes. Changes in the zonal wind field that allow for the altered propagation are in balance with a weakened temperature gradient through the full depth of the troposphere. These simulations also suggest that the tropospheric thermal stratification could be maintained by moist convection at all latitudes in warm climate states with a weak temperature gradient.
    publisherAmerican Meteorological Society
    titleThe Dynamic Response of the Winter Stratosphere to an Equable Climate Surface Temperature Gradient
    typeJournal Paper
    journal volume20
    journal issue21
    journal titleJournal of Climate
    identifier doi10.1175/2007JCLI1556.1
    journal fristpage5213
    journal lastpage5228
    treeJournal of Climate:;2007:;volume( 020 ):;issue: 021
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian