YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamics of the West African Monsoon Jump

    Source: Journal of Climate:;2007:;volume( 020 ):;issue: 021::page 5264
    Author:
    Hagos, Samson M.
    ,
    Cook, Kerry H.
    DOI: 10.1175/2007JCLI1533.1
    Publisher: American Meteorological Society
    Abstract: The observed abrupt latitudinal shift of maximum precipitation from the Guinean coast into the Sahel region in June, known as the West African monsoon jump, is studied using a regional climate model. Moisture, momentum, and energy budget analyses are used to better understand the physical processes that lead to the jump. Because of the distribution of albedo and surface moisture, a sensible heating maximum is in place over the Sahel region throughout the spring. In early May, this sensible heating drives a shallow meridional circulation and moisture convergence at the latitude of the sensible heating maximum, and this moisture is transported upward into the lower free troposphere where it diverges. During the second half of May, the supply of moisture from the boundary layer exceeds the divergence, resulting in a net supply of moisture and condensational heating into the lower troposphere. The resulting pressure gradient introduces an inertial instability, which abruptly shifts the midtropospheric meridional wind convergence maximum from the coast into the continental interior at the end of May. This in turn introduces a net total moisture convergence, net upward moisture flux and condensation in the upper troposphere, and an enhancement of precipitation in the continental interior through June. Because of the shift of the meridional convergence into the continent, condensation and precipitation along the coast gradually decline. The West African monsoon jump is an example of multiscale interaction in the climate system, in which an intraseasonal-scale event is triggered by the smooth seasonal evolution of SSTs and the solar forcing in the presence of land?sea contrast.
    • Download: (3.395Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamics of the West African Monsoon Jump

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206913
    Collections
    • Journal of Climate

    Show full item record

    contributor authorHagos, Samson M.
    contributor authorCook, Kerry H.
    date accessioned2017-06-09T16:19:10Z
    date available2017-06-09T16:19:10Z
    date copyright2007/11/01
    date issued2007
    identifier issn0894-8755
    identifier otherams-65663.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206913
    description abstractThe observed abrupt latitudinal shift of maximum precipitation from the Guinean coast into the Sahel region in June, known as the West African monsoon jump, is studied using a regional climate model. Moisture, momentum, and energy budget analyses are used to better understand the physical processes that lead to the jump. Because of the distribution of albedo and surface moisture, a sensible heating maximum is in place over the Sahel region throughout the spring. In early May, this sensible heating drives a shallow meridional circulation and moisture convergence at the latitude of the sensible heating maximum, and this moisture is transported upward into the lower free troposphere where it diverges. During the second half of May, the supply of moisture from the boundary layer exceeds the divergence, resulting in a net supply of moisture and condensational heating into the lower troposphere. The resulting pressure gradient introduces an inertial instability, which abruptly shifts the midtropospheric meridional wind convergence maximum from the coast into the continental interior at the end of May. This in turn introduces a net total moisture convergence, net upward moisture flux and condensation in the upper troposphere, and an enhancement of precipitation in the continental interior through June. Because of the shift of the meridional convergence into the continent, condensation and precipitation along the coast gradually decline. The West African monsoon jump is an example of multiscale interaction in the climate system, in which an intraseasonal-scale event is triggered by the smooth seasonal evolution of SSTs and the solar forcing in the presence of land?sea contrast.
    publisherAmerican Meteorological Society
    titleDynamics of the West African Monsoon Jump
    typeJournal Paper
    journal volume20
    journal issue21
    journal titleJournal of Climate
    identifier doi10.1175/2007JCLI1533.1
    journal fristpage5264
    journal lastpage5284
    treeJournal of Climate:;2007:;volume( 020 ):;issue: 021
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian