YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Verification and Comparison of Extreme Rainfall Indices from Climate Models

    Source: Journal of Climate:;2008:;volume( 021 ):;issue: 007::page 1605
    Author:
    Chen, Cheng-Ta
    ,
    Knutson, Thomas
    DOI: 10.1175/2007JCLI1494.1
    Publisher: American Meteorological Society
    Abstract: The interpretation of model precipitation output (e.g., as a gridpoint estimate versus as an areal mean) has a large impact on the evaluation and comparison of simulated daily extreme rainfall indices from climate models. It is first argued that interpretation as a gridpoint estimate (i.e., corresponding to station data) is incorrect. The impacts of this interpretation versus the areal mean interpretation in the context of rainfall extremes are then illustrated. A high-resolution (0.25° ? 0.25° grid) daily observed precipitation dataset for the United States [from Climate Prediction Center (CPC)] is used as idealized perfect model gridded data. Both 30-yr return levels of daily precipitation (P30) and a simple daily intensity index are substantially reduced in these data when estimated at coarser resolution compared to the estimation at finer resolution. The reduction of P30 averaged over the conterminous United States is about 9%, 15%, 28%, 33%, and 43% when the data were first interpolated to 0.5° ? 0.5°, 1° ? 1°, 2° ? 2°, 3° ? 3°, and 4° ? 4° grid boxes, respectively, before the calculation of extremes. The differences resulting from the point estimate versus areal mean interpretation are sensitive to both the data grid size and to the particular extreme rainfall index analyzed. The differences are not as sensitive to the magnitude and regional distribution of the indices. Almost all Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models underestimate U.S. mean P30 if it is compared directly with P30 estimated from the high-resolution CPC daily rainfall observation. On the other hand, if CPC daily data are first interpolated to various model resolutions before calculating the P30 (a more correct procedure in our view), about half of the models show good agreement with observations while most of the remaining models tend to overestimate the mean intensity of heavy rainfall events. A further implication of interpreting model precipitation output as an areal mean is that use of either simple multimodel ensemble averages of extreme rainfall or of intermodel variability measures of extreme rainfall to assess the common characteristics and range of uncertainties in current climate models is not appropriate if simulated extreme rainfall is analyzed at a model?s native resolution. Owing to the large sensitivity to the assumption used, the authors recommend that for analysis of precipitation extremes, investigators interpret model precipitation output as an area average as opposed to a point estimate and then ensure that various analysis steps remain consistent with that interpretation.
    • Download: (1.845Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Verification and Comparison of Extreme Rainfall Indices from Climate Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206903
    Collections
    • Journal of Climate

    Show full item record

    contributor authorChen, Cheng-Ta
    contributor authorKnutson, Thomas
    date accessioned2017-06-09T16:19:08Z
    date available2017-06-09T16:19:08Z
    date copyright2008/04/01
    date issued2008
    identifier issn0894-8755
    identifier otherams-65654.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206903
    description abstractThe interpretation of model precipitation output (e.g., as a gridpoint estimate versus as an areal mean) has a large impact on the evaluation and comparison of simulated daily extreme rainfall indices from climate models. It is first argued that interpretation as a gridpoint estimate (i.e., corresponding to station data) is incorrect. The impacts of this interpretation versus the areal mean interpretation in the context of rainfall extremes are then illustrated. A high-resolution (0.25° ? 0.25° grid) daily observed precipitation dataset for the United States [from Climate Prediction Center (CPC)] is used as idealized perfect model gridded data. Both 30-yr return levels of daily precipitation (P30) and a simple daily intensity index are substantially reduced in these data when estimated at coarser resolution compared to the estimation at finer resolution. The reduction of P30 averaged over the conterminous United States is about 9%, 15%, 28%, 33%, and 43% when the data were first interpolated to 0.5° ? 0.5°, 1° ? 1°, 2° ? 2°, 3° ? 3°, and 4° ? 4° grid boxes, respectively, before the calculation of extremes. The differences resulting from the point estimate versus areal mean interpretation are sensitive to both the data grid size and to the particular extreme rainfall index analyzed. The differences are not as sensitive to the magnitude and regional distribution of the indices. Almost all Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models underestimate U.S. mean P30 if it is compared directly with P30 estimated from the high-resolution CPC daily rainfall observation. On the other hand, if CPC daily data are first interpolated to various model resolutions before calculating the P30 (a more correct procedure in our view), about half of the models show good agreement with observations while most of the remaining models tend to overestimate the mean intensity of heavy rainfall events. A further implication of interpreting model precipitation output as an areal mean is that use of either simple multimodel ensemble averages of extreme rainfall or of intermodel variability measures of extreme rainfall to assess the common characteristics and range of uncertainties in current climate models is not appropriate if simulated extreme rainfall is analyzed at a model?s native resolution. Owing to the large sensitivity to the assumption used, the authors recommend that for analysis of precipitation extremes, investigators interpret model precipitation output as an area average as opposed to a point estimate and then ensure that various analysis steps remain consistent with that interpretation.
    publisherAmerican Meteorological Society
    titleOn the Verification and Comparison of Extreme Rainfall Indices from Climate Models
    typeJournal Paper
    journal volume21
    journal issue7
    journal titleJournal of Climate
    identifier doi10.1175/2007JCLI1494.1
    journal fristpage1605
    journal lastpage1621
    treeJournal of Climate:;2008:;volume( 021 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian