YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Structure and Formation of an Annular Hurricane Simulated in a Fully Compressible, Nonhydrostatic Model—TCM4

    Source: Journal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 005::page 1505
    Author:
    Wang, Yuqing
    DOI: 10.1175/2007JAS2528.1
    Publisher: American Meteorological Society
    Abstract: The structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic tropical cyclone model?TCM4?are analyzed. The model is initialized with an axisymmetric vortex on an f plane in a quiescent environment, and thus the transition from the nonannular hurricane to the annular hurricane is attributed to the internal dynamics. The simulated annular hurricane has all characteristics of those recently documented by Knaff et al. from satellite observations: quasi-axisymmetric structure, large eye and wide eyewall, high intensity, and suppressed major spiral rainbands. A striking feature of the simulated annular hurricane is its large outward tilt of the wide eyewall, which is critical to the quasi-steady high intensity and is responsible for the maintenance of the large size of the eye and eyewall of the storm. Although the annular hurricane has a quasi-axisymmetric structure, marked low-wavenumber asymmetries exist in the eyewall region. The formation of the simulated annular hurricane is found to be closely related to the interaction between the inner spiral rainbands and the eyewall convection. As the inner rainbands spiral cyclonically inward, they experience axisymmetrization due to strong shear deformation and filamentation outside the eyewall and evolve into a quasi-symmetric convective ring, which intensifies as it contracts while the eyewall breaks down and weakens. Eventually, the convective ring replaces the original eyewall. The new eyewall formed in such a way is wider and tilts more outward with height than the original eyewall. Several such eyewall cycles in our simulation produce an annular hurricane with large eyewall slope, large eye, and wide eyewall. The response of low-level winds to the tilted convective heating in the eyewall is an increase outside and a decrease inside the radius of maximum wind, prohibiting further contraction of the new eyewall. Strong convective mass flux in the eyewall updraft corresponds to strong convective overturning subsidence outside the eyewall, greatly suppressing the development of any major rainbands outside the eyewall. Although the eyewall cycle documented in this study contributes to the formation of annular hurricanes, it could be a general process causing the increase in eye size of real tropical cyclones as well.
    • Download: (6.692Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Structure and Formation of an Annular Hurricane Simulated in a Fully Compressible, Nonhydrostatic Model—TCM4

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206847
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorWang, Yuqing
    date accessioned2017-06-09T16:18:57Z
    date available2017-06-09T16:18:57Z
    date copyright2008/05/01
    date issued2008
    identifier issn0022-4928
    identifier otherams-65603.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206847
    description abstractThe structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic tropical cyclone model?TCM4?are analyzed. The model is initialized with an axisymmetric vortex on an f plane in a quiescent environment, and thus the transition from the nonannular hurricane to the annular hurricane is attributed to the internal dynamics. The simulated annular hurricane has all characteristics of those recently documented by Knaff et al. from satellite observations: quasi-axisymmetric structure, large eye and wide eyewall, high intensity, and suppressed major spiral rainbands. A striking feature of the simulated annular hurricane is its large outward tilt of the wide eyewall, which is critical to the quasi-steady high intensity and is responsible for the maintenance of the large size of the eye and eyewall of the storm. Although the annular hurricane has a quasi-axisymmetric structure, marked low-wavenumber asymmetries exist in the eyewall region. The formation of the simulated annular hurricane is found to be closely related to the interaction between the inner spiral rainbands and the eyewall convection. As the inner rainbands spiral cyclonically inward, they experience axisymmetrization due to strong shear deformation and filamentation outside the eyewall and evolve into a quasi-symmetric convective ring, which intensifies as it contracts while the eyewall breaks down and weakens. Eventually, the convective ring replaces the original eyewall. The new eyewall formed in such a way is wider and tilts more outward with height than the original eyewall. Several such eyewall cycles in our simulation produce an annular hurricane with large eyewall slope, large eye, and wide eyewall. The response of low-level winds to the tilted convective heating in the eyewall is an increase outside and a decrease inside the radius of maximum wind, prohibiting further contraction of the new eyewall. Strong convective mass flux in the eyewall updraft corresponds to strong convective overturning subsidence outside the eyewall, greatly suppressing the development of any major rainbands outside the eyewall. Although the eyewall cycle documented in this study contributes to the formation of annular hurricanes, it could be a general process causing the increase in eye size of real tropical cyclones as well.
    publisherAmerican Meteorological Society
    titleStructure and Formation of an Annular Hurricane Simulated in a Fully Compressible, Nonhydrostatic Model—TCM4
    typeJournal Paper
    journal volume65
    journal issue5
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2007JAS2528.1
    journal fristpage1505
    journal lastpage1527
    treeJournal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian