YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Representing Subgrid Snow Cover Heterogeneities in Regional and Global Models

    Source: Journal of Climate:;2004:;volume( 017 ):;issue: 006::page 1381
    Author:
    Liston, Glen E.
    DOI: 10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: To improve the depiction of autumn through spring land?atmosphere interactions and feedbacks within regional and global weather, climate, and hydrologic models, a Subgrid SNOW Distribution (SSNOWD) submodel that explicitly includes subgrid snow-depth and snow-cover variability has been developed. From both atmospheric and hydrologic perspectives, the subgrid snow-depth distribution is an important quantity to account for within large-scale models. In the natural system, these subgrid snow-depth distributions are largely responsible for the mosaic of snow-covered and snow-free areas that develop as the snow melts, and the impacts of these fractional areas must be quantified in order to realistically simulate grid-averaged surface fluxes. SSNOWD's formulation incorporates observational studies showing that snow distributions can be described by a lognormal distribution and the snow-depth coefficient of variation. Using an understanding of the physical processes that lead to these observed snow-depth variations, a global distribution of nine subgrid snow-depth-variability categories was developed, and coefficient-of-variation values were assigned to each category based on published measurements. In addition, SSNOWD adopts the physically realistic approach of performing separate surface-energy-balance calculations over the snow-covered and snow-free portions of each model grid cell and weighing the resulting fluxes according to these fractional areas. Using a climate version of the Regional Atmospheric Modeling System (ClimRAMS) over a North American domain, SSNOWD was compared with a snow-cover formulation similar to those currently used in most general circulation models. The simulations indicated that accounting for snow-distribution variability has a significant impact on snow-cover evolution and associated energy and moisture fluxes.
    • Download: (812.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Representing Subgrid Snow Cover Heterogeneities in Regional and Global Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206845
    Collections
    • Journal of Climate

    Show full item record

    contributor authorListon, Glen E.
    date accessioned2017-06-09T16:18:57Z
    date available2017-06-09T16:18:57Z
    date copyright2004/03/01
    date issued2004
    identifier issn0894-8755
    identifier otherams-6560.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206845
    description abstractTo improve the depiction of autumn through spring land?atmosphere interactions and feedbacks within regional and global weather, climate, and hydrologic models, a Subgrid SNOW Distribution (SSNOWD) submodel that explicitly includes subgrid snow-depth and snow-cover variability has been developed. From both atmospheric and hydrologic perspectives, the subgrid snow-depth distribution is an important quantity to account for within large-scale models. In the natural system, these subgrid snow-depth distributions are largely responsible for the mosaic of snow-covered and snow-free areas that develop as the snow melts, and the impacts of these fractional areas must be quantified in order to realistically simulate grid-averaged surface fluxes. SSNOWD's formulation incorporates observational studies showing that snow distributions can be described by a lognormal distribution and the snow-depth coefficient of variation. Using an understanding of the physical processes that lead to these observed snow-depth variations, a global distribution of nine subgrid snow-depth-variability categories was developed, and coefficient-of-variation values were assigned to each category based on published measurements. In addition, SSNOWD adopts the physically realistic approach of performing separate surface-energy-balance calculations over the snow-covered and snow-free portions of each model grid cell and weighing the resulting fluxes according to these fractional areas. Using a climate version of the Regional Atmospheric Modeling System (ClimRAMS) over a North American domain, SSNOWD was compared with a snow-cover formulation similar to those currently used in most general circulation models. The simulations indicated that accounting for snow-distribution variability has a significant impact on snow-cover evolution and associated energy and moisture fluxes.
    publisherAmerican Meteorological Society
    titleRepresenting Subgrid Snow Cover Heterogeneities in Regional and Global Models
    typeJournal Paper
    journal volume17
    journal issue6
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2
    journal fristpage1381
    journal lastpage1397
    treeJournal of Climate:;2004:;volume( 017 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian