YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulation of Mammatus

    Source: Journal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 005::page 1606
    Author:
    Kanak, Katharine M.
    ,
    Straka, Jerry M.
    ,
    Schultz, David M.
    DOI: 10.1175/2007JAS2469.1
    Publisher: American Meteorological Society
    Abstract: Mammatus are hanging lobes on the underside of clouds. Although many different mechanisms have been proposed for their formation, none have been rigorously tested. In this study, three-dimensional numerical simulations of mammatus on a portion of a cumulonimbus cirruslike anvil are performed to explore some of the dynamic and microphysical factors that affect mammatus formation and evolution. Initial conditions for the simulations are derived from observed thermodynamic soundings. Five observed soundings are chosen?four were associated with visually observed mammatus and one was not. Initial microphysical conditions in the simulations are consistent with in situ observations of cumulonimbus anvil and mammatus. Mammatus form in the four model simulations initialized with the soundings for which mammatus were observed, whereas mammatus do not form in the model simulation initialized with the no-mammatus sounding. Characteristics of the modeled mammatus compare favorably to previously published mammatus observations. Three hypothesized formation mechanisms for mammatus are tested: cloud-base detrainment instability, fallout of hydrometeors from cloud base, and sublimation of ice hydrometeors below cloud base. For the parameters considered, cloud-base detrainment instability is a necessary, but not sufficient, condition for mammatus formation. Mammatus can form without fallout, but not without sublimation. All the observed soundings for which mammatus were observed feature a dry-adiabatic subcloud layer of varying depth with low relative humidity, which supports the importance of sublimation to mammatus formation.
    • Download: (3.235Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulation of Mammatus

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206809
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorKanak, Katharine M.
    contributor authorStraka, Jerry M.
    contributor authorSchultz, David M.
    date accessioned2017-06-09T16:18:51Z
    date available2017-06-09T16:18:51Z
    date copyright2008/05/01
    date issued2008
    identifier issn0022-4928
    identifier otherams-65570.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206809
    description abstractMammatus are hanging lobes on the underside of clouds. Although many different mechanisms have been proposed for their formation, none have been rigorously tested. In this study, three-dimensional numerical simulations of mammatus on a portion of a cumulonimbus cirruslike anvil are performed to explore some of the dynamic and microphysical factors that affect mammatus formation and evolution. Initial conditions for the simulations are derived from observed thermodynamic soundings. Five observed soundings are chosen?four were associated with visually observed mammatus and one was not. Initial microphysical conditions in the simulations are consistent with in situ observations of cumulonimbus anvil and mammatus. Mammatus form in the four model simulations initialized with the soundings for which mammatus were observed, whereas mammatus do not form in the model simulation initialized with the no-mammatus sounding. Characteristics of the modeled mammatus compare favorably to previously published mammatus observations. Three hypothesized formation mechanisms for mammatus are tested: cloud-base detrainment instability, fallout of hydrometeors from cloud base, and sublimation of ice hydrometeors below cloud base. For the parameters considered, cloud-base detrainment instability is a necessary, but not sufficient, condition for mammatus formation. Mammatus can form without fallout, but not without sublimation. All the observed soundings for which mammatus were observed feature a dry-adiabatic subcloud layer of varying depth with low relative humidity, which supports the importance of sublimation to mammatus formation.
    publisherAmerican Meteorological Society
    titleNumerical Simulation of Mammatus
    typeJournal Paper
    journal volume65
    journal issue5
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2007JAS2469.1
    journal fristpage1606
    journal lastpage1621
    treeJournal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian