YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Diurnal Variation of Mountain Waves

    Source: Journal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 004::page 1360
    Author:
    Jiang, Qingfang
    ,
    Doyle, James D.
    DOI: 10.1175/2007JAS2460.1
    Publisher: American Meteorological Society
    Abstract: The diurnal variation of mountain waves and wave drag associated with flow past mesoscale ridges has been examined using the Coupled Ocean?Atmosphere Mesoscale Prediction System (COAMPS) and an analytical boundary layer (BL) model. The wave drag exhibits substantial diurnal variation in response to the change in the atmospheric BL characteristics, such as the BL depth, shape factor, and stability. During daytime, a convective BL develops, characterized by a shallow shear layer near the surface and a deep well-mixed layer aloft, both of which tend to decrease the wave drag. As a result, the convective BL could significantly weaken mountain waves and reduce the momentum flux by up to 90%. Near the surface, the flow pattern resembles a potential flow with a surface wind maximum located near the ridge crest. During nighttime, a shallow stable BL develops, and the modulation of wave drag by the stable nocturnal BL is governed by the BL Froude number (Fr). If the BL flow is supercritical, the drag increases as Fr decreases toward unity and reaches the maximum around Fr = 1, where the drag could be several times larger than the corresponding free-slip hydrostatic wave drag. If the BL flow is subcritical because of excessive cooling, the drag decreases with decreasing Froude number and the flow pattern near the surface resembles a typical subcritical solution with the wind maximum located near the ridge crest.
    • Download: (1.627Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Diurnal Variation of Mountain Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206805
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorJiang, Qingfang
    contributor authorDoyle, James D.
    date accessioned2017-06-09T16:18:51Z
    date available2017-06-09T16:18:51Z
    date copyright2008/04/01
    date issued2008
    identifier issn0022-4928
    identifier otherams-65566.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206805
    description abstractThe diurnal variation of mountain waves and wave drag associated with flow past mesoscale ridges has been examined using the Coupled Ocean?Atmosphere Mesoscale Prediction System (COAMPS) and an analytical boundary layer (BL) model. The wave drag exhibits substantial diurnal variation in response to the change in the atmospheric BL characteristics, such as the BL depth, shape factor, and stability. During daytime, a convective BL develops, characterized by a shallow shear layer near the surface and a deep well-mixed layer aloft, both of which tend to decrease the wave drag. As a result, the convective BL could significantly weaken mountain waves and reduce the momentum flux by up to 90%. Near the surface, the flow pattern resembles a potential flow with a surface wind maximum located near the ridge crest. During nighttime, a shallow stable BL develops, and the modulation of wave drag by the stable nocturnal BL is governed by the BL Froude number (Fr). If the BL flow is supercritical, the drag increases as Fr decreases toward unity and reaches the maximum around Fr = 1, where the drag could be several times larger than the corresponding free-slip hydrostatic wave drag. If the BL flow is subcritical because of excessive cooling, the drag decreases with decreasing Froude number and the flow pattern near the surface resembles a typical subcritical solution with the wind maximum located near the ridge crest.
    publisherAmerican Meteorological Society
    titleOn the Diurnal Variation of Mountain Waves
    typeJournal Paper
    journal volume65
    journal issue4
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2007JAS2460.1
    journal fristpage1360
    journal lastpage1377
    treeJournal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian