YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Structure and Mesoscale Organization of Precipitating Stratocumulus

    Source: Journal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 005::page 1587
    Author:
    Savic-Jovcic, Verica
    ,
    Stevens, Bjorn
    DOI: 10.1175/2007JAS2456.1
    Publisher: American Meteorological Society
    Abstract: Large-eddy simulations are used to explore the structure and mesoscale organization of precipitating stratocumulus. The simulations incorporate a simple, two-moment, bulk representation of microphysical processes, which by varying specified droplet concentrations allows for comparisons of simulations that do and do not develop precipitation. The boundary layer is represented over a large (25.6 km ? 25.6 km) horizontal domain using a relatively fine mesh, thereby allowing for the development of mesoscale circulations while retaining an explicit representation of cloud radiative, dynamical and microphysical interactions on scales much smaller than the dominant eddy scale. Initial conditions are based on measurements made as part of the Second Dynamics and Chemistry of the Marine Stratocumulus field study (DYCOMS-II). The simulations show that precipitation is accompanied by sharp reductions in cloudiness and changes in flow topology. Mesoscale features emerge in all of the simulations but are amplified in the presence of drizzle. A cloud albedo of near 75% in the nonprecipitating simulation is reduced to less than 35% in the precipitating case. The circulation transitions from a well-mixed, stationary stratocumulus layer with closed-cellular cloud planforms to a stationary cumulus-coupled layer, with incipient open-cellular cloud planforms and sustained domain-averaged surface precipitation rates near 1 mm day?1. The drizzling simulations embody many other features of observed precipitating stratocumulus, including elevated cloud tops in regions of precipitation and locally higher values of subcloud equivalent potential temperature. The latter is shown to result from the tendency for precipitating simulations to develop greater thermodynamic gradients in the subcloud layer as well as mesoscale circulations that locate regions of upward motion in the vicinity of precipitating cells.
    • Download: (3.138Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Structure and Mesoscale Organization of Precipitating Stratocumulus

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206804
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorSavic-Jovcic, Verica
    contributor authorStevens, Bjorn
    date accessioned2017-06-09T16:18:51Z
    date available2017-06-09T16:18:51Z
    date copyright2008/05/01
    date issued2008
    identifier issn0022-4928
    identifier otherams-65565.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206804
    description abstractLarge-eddy simulations are used to explore the structure and mesoscale organization of precipitating stratocumulus. The simulations incorporate a simple, two-moment, bulk representation of microphysical processes, which by varying specified droplet concentrations allows for comparisons of simulations that do and do not develop precipitation. The boundary layer is represented over a large (25.6 km ? 25.6 km) horizontal domain using a relatively fine mesh, thereby allowing for the development of mesoscale circulations while retaining an explicit representation of cloud radiative, dynamical and microphysical interactions on scales much smaller than the dominant eddy scale. Initial conditions are based on measurements made as part of the Second Dynamics and Chemistry of the Marine Stratocumulus field study (DYCOMS-II). The simulations show that precipitation is accompanied by sharp reductions in cloudiness and changes in flow topology. Mesoscale features emerge in all of the simulations but are amplified in the presence of drizzle. A cloud albedo of near 75% in the nonprecipitating simulation is reduced to less than 35% in the precipitating case. The circulation transitions from a well-mixed, stationary stratocumulus layer with closed-cellular cloud planforms to a stationary cumulus-coupled layer, with incipient open-cellular cloud planforms and sustained domain-averaged surface precipitation rates near 1 mm day?1. The drizzling simulations embody many other features of observed precipitating stratocumulus, including elevated cloud tops in regions of precipitation and locally higher values of subcloud equivalent potential temperature. The latter is shown to result from the tendency for precipitating simulations to develop greater thermodynamic gradients in the subcloud layer as well as mesoscale circulations that locate regions of upward motion in the vicinity of precipitating cells.
    publisherAmerican Meteorological Society
    titleThe Structure and Mesoscale Organization of Precipitating Stratocumulus
    typeJournal Paper
    journal volume65
    journal issue5
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2007JAS2456.1
    journal fristpage1587
    journal lastpage1605
    treeJournal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian