YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Tropical Cyclone Energy Dispersion in a Three-Dimensional Primitive Equation Model: Upper-Tropospheric Influence

    Source: Journal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 007::page 2272
    Author:
    Ge, Xuyang
    ,
    Li, Tim
    ,
    Wang, Yuqing
    ,
    Peng, Melinda S.
    DOI: 10.1175/2007JAS2431.1
    Publisher: American Meteorological Society
    Abstract: The three-dimensional (3D) Rossby wave energy dispersion of a tropical cyclone (TC) is studied using a baroclinic primitive equation model. The model is initialized with a symmetric vortex on a beta plane in an environment at rest. The vortex intensifies while becoming asymmetric and moving northwestward because of the beta effect. A synoptic-scale wave train forms in its wake a few days later. The energy-dispersion-induced Rossby wave train has a noticeable baroclinic structure with alternating cyclonic?anticyclonic?cyclonic (anticyclonic?cyclonic?anticyclonic) circulations in the lower (upper) troposphere. A key feature associated with the 3D wave train development is a downward propagation of the relative vorticity and kinetic energy. Because of the vertical differential inertial stability, the upper-level wave train develops faster than the lower-level counterpart. The upper anticyclonic circulation rapidly induces an intense asymmetric outflow jet in the southeast quadrant, and then further influences the lower-level Rossby wave train. On one hand, the outflow jet exerts an indirect effect on the lower-level wave train strength through changing TC intensity and structure. On the other hand, it triggers downward energy propagation that further enhances the lower-level Rossby wave train. A sudden removal of the diabatic heating may initially accelerate the energy dispersion through the increase of the radius of maximum wind and the reduction of the lower-level inflow. The latter may modulate the group velocity of the Rossby wave train through the Doppler shift effect. The 3D numerical results illustrate more complicated Rossby wave energy dispersion characteristics than 2D barotropic dynamics.
    • Download: (3.783Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Tropical Cyclone Energy Dispersion in a Three-Dimensional Primitive Equation Model: Upper-Tropospheric Influence

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206793
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorGe, Xuyang
    contributor authorLi, Tim
    contributor authorWang, Yuqing
    contributor authorPeng, Melinda S.
    date accessioned2017-06-09T16:18:49Z
    date available2017-06-09T16:18:49Z
    date copyright2008/07/01
    date issued2008
    identifier issn0022-4928
    identifier otherams-65555.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206793
    description abstractThe three-dimensional (3D) Rossby wave energy dispersion of a tropical cyclone (TC) is studied using a baroclinic primitive equation model. The model is initialized with a symmetric vortex on a beta plane in an environment at rest. The vortex intensifies while becoming asymmetric and moving northwestward because of the beta effect. A synoptic-scale wave train forms in its wake a few days later. The energy-dispersion-induced Rossby wave train has a noticeable baroclinic structure with alternating cyclonic?anticyclonic?cyclonic (anticyclonic?cyclonic?anticyclonic) circulations in the lower (upper) troposphere. A key feature associated with the 3D wave train development is a downward propagation of the relative vorticity and kinetic energy. Because of the vertical differential inertial stability, the upper-level wave train develops faster than the lower-level counterpart. The upper anticyclonic circulation rapidly induces an intense asymmetric outflow jet in the southeast quadrant, and then further influences the lower-level Rossby wave train. On one hand, the outflow jet exerts an indirect effect on the lower-level wave train strength through changing TC intensity and structure. On the other hand, it triggers downward energy propagation that further enhances the lower-level Rossby wave train. A sudden removal of the diabatic heating may initially accelerate the energy dispersion through the increase of the radius of maximum wind and the reduction of the lower-level inflow. The latter may modulate the group velocity of the Rossby wave train through the Doppler shift effect. The 3D numerical results illustrate more complicated Rossby wave energy dispersion characteristics than 2D barotropic dynamics.
    publisherAmerican Meteorological Society
    titleTropical Cyclone Energy Dispersion in a Three-Dimensional Primitive Equation Model: Upper-Tropospheric Influence
    typeJournal Paper
    journal volume65
    journal issue7
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2007JAS2431.1
    journal fristpage2272
    journal lastpage2289
    treeJournal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian