YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Midlatitude Static Stability in Simple and Comprehensive General Circulation Models

    Source: Journal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 003::page 1049
    Author:
    Frierson, Dargan M. W.
    DOI: 10.1175/2007JAS2373.1
    Publisher: American Meteorological Society
    Abstract: The static stability of the extratropical troposphere is examined in two atmospheric general circulation models (GCMs) over idealized boundary conditions, with emphasis on the role of moisture in determining the midlatitude stability. The determination of the static stability is compared within two models: an idealized moist model with simplified representations of radiative transfer and other physical processes, and a comprehensive GCM with full physics. The GCMs are run over a zonally symmetric, fixed sea surface temperature (SST) aquaplanet surface, with a multitude of SST distributions to study the response of the extratropical static stability over a wide parameter range. In both models, the dry static stability averaged over the midlatitudes increases both with increases in the meridional temperature gradients, and with increases in the mean SST. These changes in static stability are compared with both moist theories and dry theories. Dry baroclinic eddy theories are invalid for the entire parameter range in the idealized GCM, and for much of the parameter range considered in the comprehensive GCM. A moist theory, on the other hand, works remarkably well in predicting the midlatitude stability over the entire parameter range for both models. These simulations give strong support for the influence of moisture on the thermal structure of the midlatitudes.
    • Download: (1.157Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Midlatitude Static Stability in Simple and Comprehensive General Circulation Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206758
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorFrierson, Dargan M. W.
    date accessioned2017-06-09T16:18:44Z
    date available2017-06-09T16:18:44Z
    date copyright2008/03/01
    date issued2008
    identifier issn0022-4928
    identifier otherams-65523.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206758
    description abstractThe static stability of the extratropical troposphere is examined in two atmospheric general circulation models (GCMs) over idealized boundary conditions, with emphasis on the role of moisture in determining the midlatitude stability. The determination of the static stability is compared within two models: an idealized moist model with simplified representations of radiative transfer and other physical processes, and a comprehensive GCM with full physics. The GCMs are run over a zonally symmetric, fixed sea surface temperature (SST) aquaplanet surface, with a multitude of SST distributions to study the response of the extratropical static stability over a wide parameter range. In both models, the dry static stability averaged over the midlatitudes increases both with increases in the meridional temperature gradients, and with increases in the mean SST. These changes in static stability are compared with both moist theories and dry theories. Dry baroclinic eddy theories are invalid for the entire parameter range in the idealized GCM, and for much of the parameter range considered in the comprehensive GCM. A moist theory, on the other hand, works remarkably well in predicting the midlatitude stability over the entire parameter range for both models. These simulations give strong support for the influence of moisture on the thermal structure of the midlatitudes.
    publisherAmerican Meteorological Society
    titleMidlatitude Static Stability in Simple and Comprehensive General Circulation Models
    typeJournal Paper
    journal volume65
    journal issue3
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2007JAS2373.1
    journal fristpage1049
    journal lastpage1062
    treeJournal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian