YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Lagrangian Spectral Parameterization of Gravity Wave Drag Induced by Cumulus Convection

    Source: Journal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 004::page 1204
    Author:
    Song, In-Sun
    ,
    Chun, Hye-Yeong
    DOI: 10.1175/2007JAS2369.1
    Publisher: American Meteorological Society
    Abstract: A Lagrangian spectral parameterization of gravity wave drag (GWD) induced by cumulus convection (GWDC) is developed based on ray theory and several assumptions and implemented into the NCAR Whole Atmosphere Community Climate Model. The Lagrangian parameterization calculates explicitly gravity wave (GW) propagation that has been treated too simply in existing column-based parameterizations. For comparison with column-based parameterization, a hydrostatic and Boussinesq version of the Lagrangian parameterization is used in the present study. One-day convective GW-packet trajectories demonstrate that the Lagrangian parameterization calculates reasonably the GW-packet propagation, and GW packets propagate upward along curved paths determined by Doppler shifting and the variation of stability. The GW trajectories show that the horizontal extent of GW propagation can be as large as 20° as GWs approach critical levels. Comparison with column-based parameterization through one-month simulations indicates that the magnitude of GWDC is much increased due mainly to the vertical convergence of GW packets in the lower stratosphere and equatorial troposphere with the Lagrangian parameterization. However, this increase in GWDC is found to be essentially dependent on the horizontal propagation characteristics of GWs. In climate simulations, it is found that the easterly flow in the equatorial stratosphere and mesospheric subtropical jet are improved through the Lagrangian parameterization. With the Lagrangian parameterization, interannual variability is significantly enhanced in the equatorial lower stratosphere and exhibits a structure related to the onset of the westerly phase of the stratospheric quasi-biennial oscillations. Finally, limitations of the current Lagrangian parameterization and required improvements are noted.
    • Download: (4.445Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Lagrangian Spectral Parameterization of Gravity Wave Drag Induced by Cumulus Convection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206755
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorSong, In-Sun
    contributor authorChun, Hye-Yeong
    date accessioned2017-06-09T16:18:43Z
    date available2017-06-09T16:18:43Z
    date copyright2008/04/01
    date issued2008
    identifier issn0022-4928
    identifier otherams-65521.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206755
    description abstractA Lagrangian spectral parameterization of gravity wave drag (GWD) induced by cumulus convection (GWDC) is developed based on ray theory and several assumptions and implemented into the NCAR Whole Atmosphere Community Climate Model. The Lagrangian parameterization calculates explicitly gravity wave (GW) propagation that has been treated too simply in existing column-based parameterizations. For comparison with column-based parameterization, a hydrostatic and Boussinesq version of the Lagrangian parameterization is used in the present study. One-day convective GW-packet trajectories demonstrate that the Lagrangian parameterization calculates reasonably the GW-packet propagation, and GW packets propagate upward along curved paths determined by Doppler shifting and the variation of stability. The GW trajectories show that the horizontal extent of GW propagation can be as large as 20° as GWs approach critical levels. Comparison with column-based parameterization through one-month simulations indicates that the magnitude of GWDC is much increased due mainly to the vertical convergence of GW packets in the lower stratosphere and equatorial troposphere with the Lagrangian parameterization. However, this increase in GWDC is found to be essentially dependent on the horizontal propagation characteristics of GWs. In climate simulations, it is found that the easterly flow in the equatorial stratosphere and mesospheric subtropical jet are improved through the Lagrangian parameterization. With the Lagrangian parameterization, interannual variability is significantly enhanced in the equatorial lower stratosphere and exhibits a structure related to the onset of the westerly phase of the stratospheric quasi-biennial oscillations. Finally, limitations of the current Lagrangian parameterization and required improvements are noted.
    publisherAmerican Meteorological Society
    titleA Lagrangian Spectral Parameterization of Gravity Wave Drag Induced by Cumulus Convection
    typeJournal Paper
    journal volume65
    journal issue4
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2007JAS2369.1
    journal fristpage1204
    journal lastpage1224
    treeJournal of the Atmospheric Sciences:;2008:;Volume( 065 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian