YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Approach for Convective Parameterization with Memory: Separating Microphysics and Transport in Grid-Scale Equations

    Source: Journal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 011::page 4127
    Author:
    Piriou, Jean-Marcel
    ,
    Redelsperger, Jean-Luc
    ,
    Geleyn, Jean-François
    ,
    Lafore, Jean-Philippe
    ,
    Guichard, Françoise
    DOI: 10.1175/2007JAS2144.1
    Publisher: American Meteorological Society
    Abstract: An approach for convective parameterization is presented here, in which grid-scale budget equations of parameterization use separate microphysics and transport terms. This separation is used both as a way to introduce into the parameterization a more explicit causal link between all involved processes and as a vehicle for an easier representation of the memory of convective cells. The equations of parameterization become closer to those of convection-resolving models [cloud-system-resolving models (CSRMs) and large-eddy simulations (LESs)], facilitating parameterization development and validation processes versus a detailed budget of these high-resolution models. The new Microphysics and Transport Convective Scheme (MTCS) equations are presented and discussed. A first version of a convective scheme based on these equations is tested within a single-column framework. The results obtained with the new scheme are close to those of traditional ones in very moist convective cases [like the Global Atmospheric Research Programme (GARP) Atlantic Tropical Experiment (GATE) Phase III, 1974]. The simulation of more difficult drier situations [European Cloud Systems Study/Global Energy and Water Cycle Experiment (GEWEX) Cloud System Studies (EUROCS/GCSS)] is improved through more memory due to higher sensitivity of simulated convection to dry midtropospheric layers; a prognostic relation between cloudy entrainment and precipitation evaporation dramatically improves the prediction of the phase lag of the convective diurnal cycle over land with respect to surface heat forcing. The present proposal contains both a relatively general equation set, which can deal continuously with dry, moist, and deep precipitating convection, and separate?and still crude?explicit moist microphysics. In the future, when increasing the complexity of microphysical computations, such an approach may help to unify dry, moist, and deep precipitating convection inside a single parameterization, as well as facilitate global climate model (GCM) and limited-area model (LAM) parameterizations in sharing the same formulation of explicit microphysics with CSRMs.
    • Download: (1.290Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Approach for Convective Parameterization with Memory: Separating Microphysics and Transport in Grid-Scale Equations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206664
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorPiriou, Jean-Marcel
    contributor authorRedelsperger, Jean-Luc
    contributor authorGeleyn, Jean-François
    contributor authorLafore, Jean-Philippe
    contributor authorGuichard, Françoise
    date accessioned2017-06-09T16:18:28Z
    date available2017-06-09T16:18:28Z
    date copyright2007/11/01
    date issued2007
    identifier issn0022-4928
    identifier otherams-65439.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206664
    description abstractAn approach for convective parameterization is presented here, in which grid-scale budget equations of parameterization use separate microphysics and transport terms. This separation is used both as a way to introduce into the parameterization a more explicit causal link between all involved processes and as a vehicle for an easier representation of the memory of convective cells. The equations of parameterization become closer to those of convection-resolving models [cloud-system-resolving models (CSRMs) and large-eddy simulations (LESs)], facilitating parameterization development and validation processes versus a detailed budget of these high-resolution models. The new Microphysics and Transport Convective Scheme (MTCS) equations are presented and discussed. A first version of a convective scheme based on these equations is tested within a single-column framework. The results obtained with the new scheme are close to those of traditional ones in very moist convective cases [like the Global Atmospheric Research Programme (GARP) Atlantic Tropical Experiment (GATE) Phase III, 1974]. The simulation of more difficult drier situations [European Cloud Systems Study/Global Energy and Water Cycle Experiment (GEWEX) Cloud System Studies (EUROCS/GCSS)] is improved through more memory due to higher sensitivity of simulated convection to dry midtropospheric layers; a prognostic relation between cloudy entrainment and precipitation evaporation dramatically improves the prediction of the phase lag of the convective diurnal cycle over land with respect to surface heat forcing. The present proposal contains both a relatively general equation set, which can deal continuously with dry, moist, and deep precipitating convection, and separate?and still crude?explicit moist microphysics. In the future, when increasing the complexity of microphysical computations, such an approach may help to unify dry, moist, and deep precipitating convection inside a single parameterization, as well as facilitate global climate model (GCM) and limited-area model (LAM) parameterizations in sharing the same formulation of explicit microphysics with CSRMs.
    publisherAmerican Meteorological Society
    titleAn Approach for Convective Parameterization with Memory: Separating Microphysics and Transport in Grid-Scale Equations
    typeJournal Paper
    journal volume64
    journal issue11
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2007JAS2144.1
    journal fristpage4127
    journal lastpage4139
    treeJournal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian