YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    •   YE&T Library
    • AMS
    • Journal of the Atmospheric Sciences
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Predictability and Error Growth Dynamics in Cloud-Resolving Models

    Source: Journal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 012::page 4467
    Author:
    Hohenegger, Cathy
    ,
    Schär, Christoph
    DOI: 10.1175/2007JAS2143.1
    Publisher: American Meteorological Society
    Abstract: While the benefits of ensemble techniques over deterministic numerical weather predictions (NWP) are now widely recognized, the prospects of ensemble prediction systems (EPS) at high computational resolution are still largely unclear. Difficulties arise due to the poor knowledge of the mechanisms promoting rapid perturbation growth and propagation, as well as the role of nonlinearities. In this study, the dynamics associated with the growth and propagation of initial uncertainties is investigated by means of real-case high-resolution (cloud resolving) NWP integrations. The considered case is taken from the Mesoscale Alpine Programme intensive observing period 3 (MAP IOP3) and involves convection of intermediate intensity. To assess the underlying mechanisms and the degree of linearity upon the predictability of the flow, vastly different initial perturbation methodologies are compared, while all simulations use identical lateral boundary conditions to mimic a perfectly predictable synoptic-scale flow. Comparison of the perturbation methodologies indicates that the ensuing patterns of ensemble spread converge within 11 h, irrespective of the initial perturbations employed. All methodologies pinpoint the same meso-beta-scale regions of the flow as suffering from predictability limitations. This result reveals the important role of nonlinearities. Analysis also shows that hot spots of error growth can quickly (1?2 h after initialization) develop far away from the initial perturbations. This rapid radiation of the initial uncertainties throughout the computational domain is due to both sound and gravity waves, followed by the triggering and/or growth of perturbations over regions of convective instability. The growth of the uncertainties is then limited by saturation effects, which in turn are controlled by the larger-scale atmospheric environment. From a practical point of view, it is suggested that the combined effects of rapid propagation, sizeable amplification, and inherent nonlinearities may pose severe difficulties for the design of EPS or data assimilation techniques related to high-resolution quantitative precipitation forecasting.
    • Download: (1.259Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Predictability and Error Growth Dynamics in Cloud-Resolving Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206663
    Collections
    • Journal of the Atmospheric Sciences

    Show full item record

    contributor authorHohenegger, Cathy
    contributor authorSchär, Christoph
    date accessioned2017-06-09T16:18:28Z
    date available2017-06-09T16:18:28Z
    date copyright2007/12/01
    date issued2007
    identifier issn0022-4928
    identifier otherams-65438.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206663
    description abstractWhile the benefits of ensemble techniques over deterministic numerical weather predictions (NWP) are now widely recognized, the prospects of ensemble prediction systems (EPS) at high computational resolution are still largely unclear. Difficulties arise due to the poor knowledge of the mechanisms promoting rapid perturbation growth and propagation, as well as the role of nonlinearities. In this study, the dynamics associated with the growth and propagation of initial uncertainties is investigated by means of real-case high-resolution (cloud resolving) NWP integrations. The considered case is taken from the Mesoscale Alpine Programme intensive observing period 3 (MAP IOP3) and involves convection of intermediate intensity. To assess the underlying mechanisms and the degree of linearity upon the predictability of the flow, vastly different initial perturbation methodologies are compared, while all simulations use identical lateral boundary conditions to mimic a perfectly predictable synoptic-scale flow. Comparison of the perturbation methodologies indicates that the ensuing patterns of ensemble spread converge within 11 h, irrespective of the initial perturbations employed. All methodologies pinpoint the same meso-beta-scale regions of the flow as suffering from predictability limitations. This result reveals the important role of nonlinearities. Analysis also shows that hot spots of error growth can quickly (1?2 h after initialization) develop far away from the initial perturbations. This rapid radiation of the initial uncertainties throughout the computational domain is due to both sound and gravity waves, followed by the triggering and/or growth of perturbations over regions of convective instability. The growth of the uncertainties is then limited by saturation effects, which in turn are controlled by the larger-scale atmospheric environment. From a practical point of view, it is suggested that the combined effects of rapid propagation, sizeable amplification, and inherent nonlinearities may pose severe difficulties for the design of EPS or data assimilation techniques related to high-resolution quantitative precipitation forecasting.
    publisherAmerican Meteorological Society
    titlePredictability and Error Growth Dynamics in Cloud-Resolving Models
    typeJournal Paper
    journal volume64
    journal issue12
    journal titleJournal of the Atmospheric Sciences
    identifier doi10.1175/2007JAS2143.1
    journal fristpage4467
    journal lastpage4478
    treeJournal of the Atmospheric Sciences:;2007:;Volume( 064 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian