Show simple item record

contributor authorOleson, K. W.
contributor authorBonan, G. B.
contributor authorFeddema, J.
contributor authorVertenstein, M.
contributor authorGrimmond, C. S. B.
date accessioned2017-06-09T16:18:08Z
date available2017-06-09T16:18:08Z
date copyright2008/04/01
date issued2008
identifier issn1558-8424
identifier otherams-65330.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206543
description abstractUrbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the ?urban canyon? concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities.
publisherAmerican Meteorological Society
titleAn Urban Parameterization for a Global Climate Model. Part I: Formulation and Evaluation for Two Cities
typeJournal Paper
journal volume47
journal issue4
journal titleJournal of Applied Meteorology and Climatology
identifier doi10.1175/2007JAMC1597.1
journal fristpage1038
journal lastpage1060
treeJournal of Applied Meteorology and Climatology:;2008:;volume( 047 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record