YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Earth Interactions
    • View Item
    •   YE&T Library
    • AMS
    • Earth Interactions
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Landslide Risk Analysis using a New Constitutive Relationship for Granular Flow

    Source: Earth Interactions:;2008:;volume( 012 ):;issue: 004::page 1
    Author:
    Ren, Diandong
    ,
    Leslie, Lance M.
    ,
    Karoly, David
    DOI: 10.1175/2007EI237.1
    Publisher: American Meteorological Society
    Abstract: In this study, landslide potential is investigated, using a new constitutive relationship for granular flow in a numerical model. Unique to this study is an original relationship between soil moisture and the inertial number for soil particles. This numerical model can be applied to arbitrary soil slab profile configurations and to the analysis of natural disasters, such as mudslides, glacier creeping, avalanches, landslips, and other pyroclastic flows. Here the focus is on mudslides. The authors examine the effects of bed slope and soil slab thickness, soil layered profile configuration, soil moisture content, basal sliding, and the growth of vegetation, and show that increased soil moisture enhances instability primarily by decreasing soil strength, together with increasing loading. Moreover, clay soils generally require a smaller relative saturation than sandy soils for sliding to commence. For a stable configuration, such as a small slope and/or dry soil, the basal sliding is absorbed if the perturbation magnitude is small. However, large perturbations can trigger significant-scale mudslides by liquefying the soil slab. The role of vegetation depends on the wet soil thickness and the spacing between vegetation roots. The thinner the saturated soil layer, the slower the flow, giving the vegetation additional time to extract soil moisture and slow down the flow. By analyzing the effect of the root system on the stress distribution, it is shown that closer tree spacing increases the drag effects on the velocity field, provided that the root system is deeper than the shearing zone. Finally, the authors investigated a two-layer soil profile, namely, sand above clay. A significant stress jump occurs at the interface of the two media.
    • Download: (878.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Landslide Risk Analysis using a New Constitutive Relationship for Granular Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206471
    Collections
    • Earth Interactions

    Show full item record

    contributor authorRen, Diandong
    contributor authorLeslie, Lance M.
    contributor authorKaroly, David
    date accessioned2017-06-09T16:17:53Z
    date available2017-06-09T16:17:53Z
    date copyright2008/06/01
    date issued2008
    identifier otherams-65265.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206471
    description abstractIn this study, landslide potential is investigated, using a new constitutive relationship for granular flow in a numerical model. Unique to this study is an original relationship between soil moisture and the inertial number for soil particles. This numerical model can be applied to arbitrary soil slab profile configurations and to the analysis of natural disasters, such as mudslides, glacier creeping, avalanches, landslips, and other pyroclastic flows. Here the focus is on mudslides. The authors examine the effects of bed slope and soil slab thickness, soil layered profile configuration, soil moisture content, basal sliding, and the growth of vegetation, and show that increased soil moisture enhances instability primarily by decreasing soil strength, together with increasing loading. Moreover, clay soils generally require a smaller relative saturation than sandy soils for sliding to commence. For a stable configuration, such as a small slope and/or dry soil, the basal sliding is absorbed if the perturbation magnitude is small. However, large perturbations can trigger significant-scale mudslides by liquefying the soil slab. The role of vegetation depends on the wet soil thickness and the spacing between vegetation roots. The thinner the saturated soil layer, the slower the flow, giving the vegetation additional time to extract soil moisture and slow down the flow. By analyzing the effect of the root system on the stress distribution, it is shown that closer tree spacing increases the drag effects on the velocity field, provided that the root system is deeper than the shearing zone. Finally, the authors investigated a two-layer soil profile, namely, sand above clay. A significant stress jump occurs at the interface of the two media.
    publisherAmerican Meteorological Society
    titleLandslide Risk Analysis using a New Constitutive Relationship for Granular Flow
    typeJournal Paper
    journal volume12
    journal issue4
    journal titleEarth Interactions
    identifier doi10.1175/2007EI237.1
    journal fristpage1
    journal lastpage16
    treeEarth Interactions:;2008:;volume( 012 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian