YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sublimation of Intercepted Snow within a Subalpine Forest Canopy at Two Elevations

    Source: Journal of Hydrometeorology:;2004:;Volume( 005 ):;issue: 005::page 763
    Author:
    Montesi, James
    ,
    Elder, Kelly
    ,
    Schmidt, R. A.
    ,
    Davis, Robert E.
    DOI: 10.1175/1525-7541(2004)005<0763:SOISWA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: To determine how elevation affects the sublimation rate from intercepted snow within a subalpine forest canopy, a cut subalpine fir and an artificial conifer were weighed at each of two elevations (3230 and 2920 m) at a U.S. continental site (39°53?N, 105°54?W) from 1 January to 1 May 2001. Measured stand characteristics included canopy density (67% and 75%) and basal area (43.4 and 24.1 m2 ha?1) for the higher and lower elevations, respectively. Temperature, relative humidity, net radiation, wind speed, and mass of snow on suspended trees provided data to determine whether sublimation rates of intercepted snow are more rapid at higher elevations associated with increased wind speed. Measurements showed the unexpected result that wind speed during sublimation periods was lower at higher elevations, probably because of terrain sheltering. The analysis examined 21 storm-free periods ranging in duration from 9 to 53 h. Sublimation rates per unit mass of intercepted snow were significantly larger at the lower-elevation site associated with warmer temperatures, lower relative humidity, and greater wind speeds. Application of meteorological data to an ice sphere model indicated that predicted mean sublimation rates of an ice sphere index were 23% ± 7% more rapid at the lower elevation due to weather factors alone. However, greater snowfall at higher elevations produced greater interception, resulting in substantially more snow being sublimated back to the atmosphere at the upper site. Over the study period, sublimation of snow intercepted by the test trees amounted to 20%?30% of total snowfall accumulated at the sites during the 21 storms selected for analysis.
    • Download: (384.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sublimation of Intercepted Snow within a Subalpine Forest Canopy at Two Elevations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206405
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorMontesi, James
    contributor authorElder, Kelly
    contributor authorSchmidt, R. A.
    contributor authorDavis, Robert E.
    date accessioned2017-06-09T16:17:44Z
    date available2017-06-09T16:17:44Z
    date copyright2004/10/01
    date issued2004
    identifier issn1525-755X
    identifier otherams-65205.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206405
    description abstractTo determine how elevation affects the sublimation rate from intercepted snow within a subalpine forest canopy, a cut subalpine fir and an artificial conifer were weighed at each of two elevations (3230 and 2920 m) at a U.S. continental site (39°53?N, 105°54?W) from 1 January to 1 May 2001. Measured stand characteristics included canopy density (67% and 75%) and basal area (43.4 and 24.1 m2 ha?1) for the higher and lower elevations, respectively. Temperature, relative humidity, net radiation, wind speed, and mass of snow on suspended trees provided data to determine whether sublimation rates of intercepted snow are more rapid at higher elevations associated with increased wind speed. Measurements showed the unexpected result that wind speed during sublimation periods was lower at higher elevations, probably because of terrain sheltering. The analysis examined 21 storm-free periods ranging in duration from 9 to 53 h. Sublimation rates per unit mass of intercepted snow were significantly larger at the lower-elevation site associated with warmer temperatures, lower relative humidity, and greater wind speeds. Application of meteorological data to an ice sphere model indicated that predicted mean sublimation rates of an ice sphere index were 23% ± 7% more rapid at the lower elevation due to weather factors alone. However, greater snowfall at higher elevations produced greater interception, resulting in substantially more snow being sublimated back to the atmosphere at the upper site. Over the study period, sublimation of snow intercepted by the test trees amounted to 20%?30% of total snowfall accumulated at the sites during the 21 storms selected for analysis.
    publisherAmerican Meteorological Society
    titleSublimation of Intercepted Snow within a Subalpine Forest Canopy at Two Elevations
    typeJournal Paper
    journal volume5
    journal issue5
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/1525-7541(2004)005<0763:SOISWA>2.0.CO;2
    journal fristpage763
    journal lastpage773
    treeJournal of Hydrometeorology:;2004:;Volume( 005 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian