YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vegetation and Topographic Control of Wind-Blown Snow Distributions in Distributed and Aggregated Simulations for an Arctic Tundra Basin

    Source: Journal of Hydrometeorology:;2004:;Volume( 005 ):;issue: 005::page 735
    Author:
    Essery, Richard
    ,
    Pomeroy, John
    DOI: 10.1175/1525-7541(2004)005<0735:VATCOW>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A finescale model of blowing snow is used to simulate the characteristics of snow cover in a low-Arctic catchment with moderate topography and partial shrub cover. The influence of changing shrub characteristics is investigated by performing a sequence of simulations with varying shrub heights and coverage. Increasing shrub height gives an increase in snow depth within the shrub-covered areas, up to a limit determined by the supply of falling and blowing snow, but increasing shrub coverage gives a decrease in snow depths within shrubs as the supply of blowing snow imported from open areas is reduced. A simulation of snow redistribution over the existing topography without any shrub cover gives much greater accumulations of snow on slopes in the lee of the prevailing wind than on windward slopes; in contrast, shrubs are able to trap snow on both lee and windward slopes. A spatially aggregated, or tiled, model is developed in which snow is relocated by wind transport from sparsely vegetated tiles to more densely vegetated tiles. The vegetation distribution is not specified, but the simulation is parameterized using average fetch lengths along the major transport axis. The aggregated model is found to be capable of matching the average snow accumulation in shrub and open areas predicted by the distributed model reasonably well but with much less computational cost.
    • Download: (613.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vegetation and Topographic Control of Wind-Blown Snow Distributions in Distributed and Aggregated Simulations for an Arctic Tundra Basin

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206403
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorEssery, Richard
    contributor authorPomeroy, John
    date accessioned2017-06-09T16:17:44Z
    date available2017-06-09T16:17:44Z
    date copyright2004/10/01
    date issued2004
    identifier issn1525-755X
    identifier otherams-65203.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206403
    description abstractA finescale model of blowing snow is used to simulate the characteristics of snow cover in a low-Arctic catchment with moderate topography and partial shrub cover. The influence of changing shrub characteristics is investigated by performing a sequence of simulations with varying shrub heights and coverage. Increasing shrub height gives an increase in snow depth within the shrub-covered areas, up to a limit determined by the supply of falling and blowing snow, but increasing shrub coverage gives a decrease in snow depths within shrubs as the supply of blowing snow imported from open areas is reduced. A simulation of snow redistribution over the existing topography without any shrub cover gives much greater accumulations of snow on slopes in the lee of the prevailing wind than on windward slopes; in contrast, shrubs are able to trap snow on both lee and windward slopes. A spatially aggregated, or tiled, model is developed in which snow is relocated by wind transport from sparsely vegetated tiles to more densely vegetated tiles. The vegetation distribution is not specified, but the simulation is parameterized using average fetch lengths along the major transport axis. The aggregated model is found to be capable of matching the average snow accumulation in shrub and open areas predicted by the distributed model reasonably well but with much less computational cost.
    publisherAmerican Meteorological Society
    titleVegetation and Topographic Control of Wind-Blown Snow Distributions in Distributed and Aggregated Simulations for an Arctic Tundra Basin
    typeJournal Paper
    journal volume5
    journal issue5
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/1525-7541(2004)005<0735:VATCOW>2.0.CO;2
    journal fristpage735
    journal lastpage744
    treeJournal of Hydrometeorology:;2004:;Volume( 005 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian