YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impacts of Land Surface Model Complexity on a Regional Simulation of a Tropical Synoptic Event

    Source: Journal of Hydrometeorology:;2004:;Volume( 005 ):;issue: 001::page 180
    Author:
    Zhang, H.
    ,
    McGregor, J. L.
    ,
    Henderson-Sellers, A.
    ,
    Katzfey, J. J.
    DOI: 10.1175/1525-7541(2004)005<0180:IOLSMC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A multimode Chameleon Surface Model (CHASM) with different levels of complexity in parameterizing surface energy balance is coupled to a limited-area model (DARLAM) to investigate the impacts of complexity in land surface representations on the model simulation of a tropical synoptic event. A low pressure system is examined in two sets of numerical experiments to discuss the following. (i) Does land surface parameterization influence regional numerical weather simulations? (ii) Can the complexity of land surface schemes in numerical models be represented by parameter tuning? The model-simulated tracks of the low pressure center do not, overall, show large sensitivity to the different CHASM modes coupled to the limited-area model. However, the landing position of the system, as one measurement of the track difference, can be influenced by several degrees in latitude and about one degree in longitude. Some of the track differences are larger than the intrinsic numerical noise in the model estimated from two sets of random perturbation runs. In addition, the landing time of the low pressure system can differ by about 14 h. The differences in the model-simulated central pressure exceed the model intrinsic numerical noise and such variations consistent with the differences seen in simulated surface fluxes. Furthermore, different complexity in the land surface scheme can significantly affect the model rainfall and temperature simulations associated with the low center, with differences in rainfall up to 20 mm day?1 and in surface temperature up to 2°C. Explicitly representing surface resistance and bare ground evaporation components in CHASM produces the most significant impacts on the surface processes. Results from the second set of experiments, in which the CHASM modes are calibrated by parameter tuning, demonstrate that the effects of the physical processes represented by extra complexity in some CHASM modes cannot be substituted for by parameter tuning in simplified land surface schemes.
    • Download: (2.117Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impacts of Land Surface Model Complexity on a Regional Simulation of a Tropical Synoptic Event

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206357
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorZhang, H.
    contributor authorMcGregor, J. L.
    contributor authorHenderson-Sellers, A.
    contributor authorKatzfey, J. J.
    date accessioned2017-06-09T16:17:37Z
    date available2017-06-09T16:17:37Z
    date copyright2004/02/01
    date issued2004
    identifier issn1525-755X
    identifier otherams-65162.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206357
    description abstractA multimode Chameleon Surface Model (CHASM) with different levels of complexity in parameterizing surface energy balance is coupled to a limited-area model (DARLAM) to investigate the impacts of complexity in land surface representations on the model simulation of a tropical synoptic event. A low pressure system is examined in two sets of numerical experiments to discuss the following. (i) Does land surface parameterization influence regional numerical weather simulations? (ii) Can the complexity of land surface schemes in numerical models be represented by parameter tuning? The model-simulated tracks of the low pressure center do not, overall, show large sensitivity to the different CHASM modes coupled to the limited-area model. However, the landing position of the system, as one measurement of the track difference, can be influenced by several degrees in latitude and about one degree in longitude. Some of the track differences are larger than the intrinsic numerical noise in the model estimated from two sets of random perturbation runs. In addition, the landing time of the low pressure system can differ by about 14 h. The differences in the model-simulated central pressure exceed the model intrinsic numerical noise and such variations consistent with the differences seen in simulated surface fluxes. Furthermore, different complexity in the land surface scheme can significantly affect the model rainfall and temperature simulations associated with the low center, with differences in rainfall up to 20 mm day?1 and in surface temperature up to 2°C. Explicitly representing surface resistance and bare ground evaporation components in CHASM produces the most significant impacts on the surface processes. Results from the second set of experiments, in which the CHASM modes are calibrated by parameter tuning, demonstrate that the effects of the physical processes represented by extra complexity in some CHASM modes cannot be substituted for by parameter tuning in simplified land surface schemes.
    publisherAmerican Meteorological Society
    titleImpacts of Land Surface Model Complexity on a Regional Simulation of a Tropical Synoptic Event
    typeJournal Paper
    journal volume5
    journal issue1
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/1525-7541(2004)005<0180:IOLSMC>2.0.CO;2
    journal fristpage180
    journal lastpage198
    treeJournal of Hydrometeorology:;2004:;Volume( 005 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian