YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessing the Impact of Horizontal Error Correlations in Background Fields on Soil Moisture Estimation

    Source: Journal of Hydrometeorology:;2003:;Volume( 004 ):;issue: 006::page 1229
    Author:
    Reichle, Rolf H.
    ,
    Koster, Randal D.
    DOI: 10.1175/1525-7541(2003)004<1229:ATIOHE>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The importance of horizontal error correlations in background (i.e., model forecast) fields for large-scale soil moisture estimation is assessed by comparing the performance of one- and three-dimensional ensemble Kalman filters (EnKF) in a twin experiment. Over a domain centered on the U. S. Great Plains, gauge-based precipitation data is used to force the ?true? model solution, and reanalysis data for the prior (or background) fields. The difference between the two precipitation datasets is thought to be representative of errors that might be encountered in a global land assimilation system. To ensure realistic conditions the synthetic observations of surface soil moisture match the spatiotemporal pattern and expected errors of retrievals from the Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite. After filter calibration, average actual estimation errors in the (volumetric) root zone moisture content are 0.015 m3 m?3 for the 3D-EnKF, 0.019 m3 m?3 for the 1D-EnKF, and 0.036 m3 m?3 without assimilation. Clearly, taking horizontal error correlations into account improves estimation accuracy. Soil moisture estimation errors in the 3D-EnKF are smallest for a correlation scale of 2° in model parameter and forcing errors, which coincides with the horizontal scale of difference fields between gauge-based and reanalysis precipitation. In this case the 3D-EnKF requires 1.6 times the computational effort of the 1D-EnKF, but this factor depends on the experiment setup.
    • Download: (891.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessing the Impact of Horizontal Error Correlations in Background Fields on Soil Moisture Estimation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206316
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorReichle, Rolf H.
    contributor authorKoster, Randal D.
    date accessioned2017-06-09T16:17:30Z
    date available2017-06-09T16:17:30Z
    date copyright2003/12/01
    date issued2003
    identifier issn1525-755X
    identifier otherams-65125.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206316
    description abstractThe importance of horizontal error correlations in background (i.e., model forecast) fields for large-scale soil moisture estimation is assessed by comparing the performance of one- and three-dimensional ensemble Kalman filters (EnKF) in a twin experiment. Over a domain centered on the U. S. Great Plains, gauge-based precipitation data is used to force the ?true? model solution, and reanalysis data for the prior (or background) fields. The difference between the two precipitation datasets is thought to be representative of errors that might be encountered in a global land assimilation system. To ensure realistic conditions the synthetic observations of surface soil moisture match the spatiotemporal pattern and expected errors of retrievals from the Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite. After filter calibration, average actual estimation errors in the (volumetric) root zone moisture content are 0.015 m3 m?3 for the 3D-EnKF, 0.019 m3 m?3 for the 1D-EnKF, and 0.036 m3 m?3 without assimilation. Clearly, taking horizontal error correlations into account improves estimation accuracy. Soil moisture estimation errors in the 3D-EnKF are smallest for a correlation scale of 2° in model parameter and forcing errors, which coincides with the horizontal scale of difference fields between gauge-based and reanalysis precipitation. In this case the 3D-EnKF requires 1.6 times the computational effort of the 1D-EnKF, but this factor depends on the experiment setup.
    publisherAmerican Meteorological Society
    titleAssessing the Impact of Horizontal Error Correlations in Background Fields on Soil Moisture Estimation
    typeJournal Paper
    journal volume4
    journal issue6
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/1525-7541(2003)004<1229:ATIOHE>2.0.CO;2
    journal fristpage1229
    journal lastpage1242
    treeJournal of Hydrometeorology:;2003:;Volume( 004 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian