contributor author | Brunsell, Nathaniel A. | |
contributor author | Gillies, Robert R. | |
date accessioned | 2017-06-09T16:17:30Z | |
date available | 2017-06-09T16:17:30Z | |
date copyright | 2003/12/01 | |
date issued | 2003 | |
identifier issn | 1525-755X | |
identifier other | ams-65123.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4206314 | |
description abstract | Wavelet multiresolution analysis was used to examine the variation in dominant length scales determined from remotely sensed airborne- and satellite-derived surface energy flux data. The wavelet cospectra are computed between surface radiometric temperature, fractional vegetation, and derived energy fluxes at airborne (12 m) and Advanced Very High Resolution Radiometer (AVHRR) (1000 m) resolutions. Length scale analysis of high-resolution data shows that small-scale variability in temperature dominates over other effects. Analysis of coarse-resolution data shows that small-scale variations in vegetation are important, although the large-scale variation in radiometric temperature dominates the derived fluxes. This is determined to be a result of the fact that, at smaller scales, the incoming solar radiation effect is muted by the small-scale variability in vegetation, temperature, and albedo, whereas at coarser scales, the large-scale effect of incoming radiation on temperature dominates over the smaller-scale features in surface variability. | |
publisher | American Meteorological Society | |
title | Length Scale Analysis of Surface Energy Fluxes Derived from Remote Sensing | |
type | Journal Paper | |
journal volume | 4 | |
journal issue | 6 | |
journal title | Journal of Hydrometeorology | |
identifier doi | 10.1175/1525-7541(2003)004<1212:LSAOSE>2.0.CO;2 | |
journal fristpage | 1212 | |
journal lastpage | 1219 | |
tree | Journal of Hydrometeorology:;2003:;Volume( 004 ):;issue: 006 | |
contenttype | Fulltext | |