YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of the ERA-40 Surface Water Budget and Surface Temperature for the Mackenzie River Basin

    Source: Journal of Hydrometeorology:;2003:;Volume( 004 ):;issue: 006::page 1194
    Author:
    Betts, Alan K.
    ,
    Ball, John H.
    ,
    Viterbo, Pedro
    DOI: 10.1175/1525-7541(2003)004<1194:EOTESW>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The systematic biases in temperature and precipitation, and the surface water budget of European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA-40) for the Mackenzie River basin are assessed by comparing monthly averages from ERA-40 with basin averages of surface observations of temperature, precipitation, evaporation, and streamflow from the Mackenzie Global Energy and Water Cycle Experiment (GEWEX) Study (MAGS). The bias and spinup of precipitation in ERA-40 changes significantly over the analysis period. On an annual basis, both precipitation bias and spinup are correlated with the analysis increment of atmospheric total column water vapor. ERA-40 has, in addition, a high bias of precipitation in spring and a low bias in fall. The monthly precipitation analysis is best for the most recent decade, when the bias of the 0?12-h forecast precipitation is only a few percent higher than the MAGS observations, and ERA-40 represents rather well the variability of monthly precipitation. Annual evapotranspiration from ERA-40 is higher than a MAGS estimate by 30%. The annual runoff in ERA-40 is comparable to the annual streamflow, but the interannual variability is poorly correlated. ERA-40 has two runoff peaks: in April, when snowmelt runs off quickly over the frozen ground, and in August, when the lowest model layer melts and reaches a soil moisture threshold, when deep drainage increases rapidly. In the model liquid water budget, the soil water analysis increment contributes only 17 mm of water to the annual liquid budget (primarily in summer), which is small compared with the mean rainfall (323 mm) and snowmelt (194 mm). However, in the frozen budget, the analysis increment of snow water equivalent, with an annual mean total of 97 mm, is not much smaller than the mean annual snowfall (140 mm). Improvements to the model snow treatment are needed: snow melts too soon in the model, and is replaced by the snow analysis increments. For the Mackenzie River, ERA-40 has a distinct seasonal temperature bias, with a 2?3-K warm bias from December to April, and a cool bias in summer, reaching ?1.5 K in July. This signal is larger for the heavily forested southern basins. The warm winter bias may be related to a too-low albedo for snow under tall vegetation, while the cool summer bias may indicate excess evaporation. In a comparison of the subbasins with the MAGS estimates, ERA-40 has more precipitation than the MAGS observations for the northern and western mountainous basins, but for those basins the data are sparse. For evaporation, ERA-40 has less variation across the basins than the MAGS estimate. ERA-40 appears to represent well the climatological gradient of deep soil temperature across the Mackenzie basin, from continuous permafrost in the north to no permafrost in the south.
    • Download: (2.375Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of the ERA-40 Surface Water Budget and Surface Temperature for the Mackenzie River Basin

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206313
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorBetts, Alan K.
    contributor authorBall, John H.
    contributor authorViterbo, Pedro
    date accessioned2017-06-09T16:17:30Z
    date available2017-06-09T16:17:30Z
    date copyright2003/12/01
    date issued2003
    identifier issn1525-755X
    identifier otherams-65122.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206313
    description abstractThe systematic biases in temperature and precipitation, and the surface water budget of European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA-40) for the Mackenzie River basin are assessed by comparing monthly averages from ERA-40 with basin averages of surface observations of temperature, precipitation, evaporation, and streamflow from the Mackenzie Global Energy and Water Cycle Experiment (GEWEX) Study (MAGS). The bias and spinup of precipitation in ERA-40 changes significantly over the analysis period. On an annual basis, both precipitation bias and spinup are correlated with the analysis increment of atmospheric total column water vapor. ERA-40 has, in addition, a high bias of precipitation in spring and a low bias in fall. The monthly precipitation analysis is best for the most recent decade, when the bias of the 0?12-h forecast precipitation is only a few percent higher than the MAGS observations, and ERA-40 represents rather well the variability of monthly precipitation. Annual evapotranspiration from ERA-40 is higher than a MAGS estimate by 30%. The annual runoff in ERA-40 is comparable to the annual streamflow, but the interannual variability is poorly correlated. ERA-40 has two runoff peaks: in April, when snowmelt runs off quickly over the frozen ground, and in August, when the lowest model layer melts and reaches a soil moisture threshold, when deep drainage increases rapidly. In the model liquid water budget, the soil water analysis increment contributes only 17 mm of water to the annual liquid budget (primarily in summer), which is small compared with the mean rainfall (323 mm) and snowmelt (194 mm). However, in the frozen budget, the analysis increment of snow water equivalent, with an annual mean total of 97 mm, is not much smaller than the mean annual snowfall (140 mm). Improvements to the model snow treatment are needed: snow melts too soon in the model, and is replaced by the snow analysis increments. For the Mackenzie River, ERA-40 has a distinct seasonal temperature bias, with a 2?3-K warm bias from December to April, and a cool bias in summer, reaching ?1.5 K in July. This signal is larger for the heavily forested southern basins. The warm winter bias may be related to a too-low albedo for snow under tall vegetation, while the cool summer bias may indicate excess evaporation. In a comparison of the subbasins with the MAGS estimates, ERA-40 has more precipitation than the MAGS observations for the northern and western mountainous basins, but for those basins the data are sparse. For evaporation, ERA-40 has less variation across the basins than the MAGS estimate. ERA-40 appears to represent well the climatological gradient of deep soil temperature across the Mackenzie basin, from continuous permafrost in the north to no permafrost in the south.
    publisherAmerican Meteorological Society
    titleEvaluation of the ERA-40 Surface Water Budget and Surface Temperature for the Mackenzie River Basin
    typeJournal Paper
    journal volume4
    journal issue6
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/1525-7541(2003)004<1194:EOTESW>2.0.CO;2
    journal fristpage1194
    journal lastpage1211
    treeJournal of Hydrometeorology:;2003:;Volume( 004 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian