YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Variation in Surface Energetics during Snowmelt in a Subarctic Mountain Catchment

    Source: Journal of Hydrometeorology:;2003:;Volume( 004 ):;issue: 004::page 702
    Author:
    Pomeroy, J. W.
    ,
    Toth, B.
    ,
    Granger, R. J.
    ,
    Hedstrom, N. R.
    ,
    Essery, R. L. H.
    DOI: 10.1175/1525-7541(2003)004<0702:VISEDS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Surface energetics and snow ablation were examined during the 1999 snowmelt season in a mountain subarctic tundra valley in the Yukon Territory of Canada. Considerations of melt energetics at small scales were made with respect to the frame of reference of the sloping surface snowpack. During relatively warm and sunny conditions early in melt, snow ablation rates were dramatically higher on the south-facing slope and strongly reduced on the north-facing slope, compared to the valley bottom. Negative spatial covariances developed between maximum snow accumulation and ablation rate during early and middle melt, with the highest ablation rates occurring on slopes with the shallowest snowpacks. Atmospheric conditions were sufficiently well mixed across the valley that reference level air temperatures and humidity among the slopes were close to levels of measurement accuracy. However, under high levels of April insolation, notable differences in incoming solar radiation to varying slopes/aspects caused relatively larger differences in net radiation and surface temperature, which were progressively magnified as shrubs and soil became exposed during snow ablation. Under cloudier conditions later in melt, the south-facing snowpack had mostly ablated, vegetation was exposed at all sites, and ablation rates were virtually identical between the valley bottom and north-facing slope. Driven primarily by initial differences in insolation and snow accumulation, surface energy fluxes changed sign and magnitude over space, not only with insolation, vegetation cover, slope, and aspect, but also with the snow cover state and ground/vegetation exposure. Melt rate was, hence, controlled by both incoming energy and evolving and initial snow states. For these reasons, and because of the slope-based frame of reference necessary to precisely define the snowmelt energy balance, simple aggregate representations of melt in subarctic mountain environments that are based on averaged energy flux, snow state, and flat-plane conceptions may require substantive corrections that should be explored in modeling studies.
    • Download: (2.591Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Variation in Surface Energetics during Snowmelt in a Subarctic Mountain Catchment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206276
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorPomeroy, J. W.
    contributor authorToth, B.
    contributor authorGranger, R. J.
    contributor authorHedstrom, N. R.
    contributor authorEssery, R. L. H.
    date accessioned2017-06-09T16:17:25Z
    date available2017-06-09T16:17:25Z
    date copyright2003/08/01
    date issued2003
    identifier issn1525-755X
    identifier otherams-65090.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206276
    description abstractSurface energetics and snow ablation were examined during the 1999 snowmelt season in a mountain subarctic tundra valley in the Yukon Territory of Canada. Considerations of melt energetics at small scales were made with respect to the frame of reference of the sloping surface snowpack. During relatively warm and sunny conditions early in melt, snow ablation rates were dramatically higher on the south-facing slope and strongly reduced on the north-facing slope, compared to the valley bottom. Negative spatial covariances developed between maximum snow accumulation and ablation rate during early and middle melt, with the highest ablation rates occurring on slopes with the shallowest snowpacks. Atmospheric conditions were sufficiently well mixed across the valley that reference level air temperatures and humidity among the slopes were close to levels of measurement accuracy. However, under high levels of April insolation, notable differences in incoming solar radiation to varying slopes/aspects caused relatively larger differences in net radiation and surface temperature, which were progressively magnified as shrubs and soil became exposed during snow ablation. Under cloudier conditions later in melt, the south-facing snowpack had mostly ablated, vegetation was exposed at all sites, and ablation rates were virtually identical between the valley bottom and north-facing slope. Driven primarily by initial differences in insolation and snow accumulation, surface energy fluxes changed sign and magnitude over space, not only with insolation, vegetation cover, slope, and aspect, but also with the snow cover state and ground/vegetation exposure. Melt rate was, hence, controlled by both incoming energy and evolving and initial snow states. For these reasons, and because of the slope-based frame of reference necessary to precisely define the snowmelt energy balance, simple aggregate representations of melt in subarctic mountain environments that are based on averaged energy flux, snow state, and flat-plane conceptions may require substantive corrections that should be explored in modeling studies.
    publisherAmerican Meteorological Society
    titleVariation in Surface Energetics during Snowmelt in a Subarctic Mountain Catchment
    typeJournal Paper
    journal volume4
    journal issue4
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/1525-7541(2003)004<0702:VISEDS>2.0.CO;2
    journal fristpage702
    journal lastpage719
    treeJournal of Hydrometeorology:;2003:;Volume( 004 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian