YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling the Effect of Land Surface Evaporation Variability on Precipitation Variability. Part II: Time- and Space-Scale structure

    Source: Journal of Hydrometeorology:;2002:;Volume( 003 ):;issue: 004::page 451
    Author:
    Reale, Oreste
    ,
    Dirmeyer, Paul
    ,
    Schlosser, Adam
    DOI: 10.1175/1525-7541(2002)003<0451:MTEOLS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: This is the second of a two-part article investigating the impact of variations of land surface evaporability on the interannual variability of precipitation. The first goal of this part is to analyze the relationship between the atmospheric internal variability and the evaporative forcings. The hypothesis that the sum of ocean- and atmosphere-induced variabilities can be linearly amplified by the land variability is critically revisited and generally found not applicable to the climate model used and the numerical experiments conducted. A set of parameters to evaluate the departure from the linear behavior is defined, quantifying the impact of the different forcings over the total variability. Some areas of the world (e.g., the monsoon region, the continental United States, and southeastern Africa), where the impact of internal atmospheric dynamics on precipitation variability is small compared to the impact of the evaporative forcings, are localized. Over these areas, the variability of precipitation might be more predictable, given a good knowledge of the surface boundary forcings. In the second half of this article the time structure of the land forcing is analyzed, to quantify the contributions of the interannual variations, diurnal cycle, and high-frequency (i.e., synoptic scale) variations and compare them with the contribution of the oceanic forcing. The general conclusion is that interannual variability of both sea surface temperature and land evaporability is very important to the overall variability of precipitation over the Tropics. Over land in the subtropics and midlatitudes equatorward of the polar front there are also substantial feedbacks at the interannual scale. The impact of synoptic-scale variations of land evaporability is generally smaller, except for some areas in the midlatitudes near the polar front, particularly continental Eurasia and parts of North America. Finally, there is no general, widespread evidence showing the importance of the diurnal cycle of evaporability to the interannual variability of precipitation. However, strong regional differences are detected, and some tropical areas, like the Congo basin, where the diurnal cycle does contribute to the interannual variability of precipitation are outlined.
    • Download: (1.190Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling the Effect of Land Surface Evaporation Variability on Precipitation Variability. Part II: Time- and Space-Scale structure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206228
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorReale, Oreste
    contributor authorDirmeyer, Paul
    contributor authorSchlosser, Adam
    date accessioned2017-06-09T16:17:16Z
    date available2017-06-09T16:17:16Z
    date copyright2002/08/01
    date issued2002
    identifier issn1525-755X
    identifier otherams-65046.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206228
    description abstractThis is the second of a two-part article investigating the impact of variations of land surface evaporability on the interannual variability of precipitation. The first goal of this part is to analyze the relationship between the atmospheric internal variability and the evaporative forcings. The hypothesis that the sum of ocean- and atmosphere-induced variabilities can be linearly amplified by the land variability is critically revisited and generally found not applicable to the climate model used and the numerical experiments conducted. A set of parameters to evaluate the departure from the linear behavior is defined, quantifying the impact of the different forcings over the total variability. Some areas of the world (e.g., the monsoon region, the continental United States, and southeastern Africa), where the impact of internal atmospheric dynamics on precipitation variability is small compared to the impact of the evaporative forcings, are localized. Over these areas, the variability of precipitation might be more predictable, given a good knowledge of the surface boundary forcings. In the second half of this article the time structure of the land forcing is analyzed, to quantify the contributions of the interannual variations, diurnal cycle, and high-frequency (i.e., synoptic scale) variations and compare them with the contribution of the oceanic forcing. The general conclusion is that interannual variability of both sea surface temperature and land evaporability is very important to the overall variability of precipitation over the Tropics. Over land in the subtropics and midlatitudes equatorward of the polar front there are also substantial feedbacks at the interannual scale. The impact of synoptic-scale variations of land evaporability is generally smaller, except for some areas in the midlatitudes near the polar front, particularly continental Eurasia and parts of North America. Finally, there is no general, widespread evidence showing the importance of the diurnal cycle of evaporability to the interannual variability of precipitation. However, strong regional differences are detected, and some tropical areas, like the Congo basin, where the diurnal cycle does contribute to the interannual variability of precipitation are outlined.
    publisherAmerican Meteorological Society
    titleModeling the Effect of Land Surface Evaporation Variability on Precipitation Variability. Part II: Time- and Space-Scale structure
    typeJournal Paper
    journal volume3
    journal issue4
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/1525-7541(2002)003<0451:MTEOLS>2.0.CO;2
    journal fristpage451
    journal lastpage466
    treeJournal of Hydrometeorology:;2002:;Volume( 003 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian