YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Incorporating NDVI-Derived LAI into the Climate Version of RAMS and Its Impact on Regional Climate

    Source: Journal of Hydrometeorology:;2002:;Volume( 003 ):;issue: 003::page 347
    Author:
    Lu, Lixin
    ,
    Shuttleworth, W. James
    DOI: 10.1175/1525-7541(2002)003<0347:INDLIT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In this study, a climate version of the Regional Atmospheric Modeling System (ClimRAMS) was used to investigate the sensitivity of regional climate simulations to changes in vegetation distribution in the Great Plains and Rocky Mountain regions of the United States. The evolution of vegetation phenology was assimilated into the ClimRAMS in the form of estimates of the leaf area index (LAI) derived from the normalized difference vegetation index (NDVI). Initially, two model integrations were made. In the first, the NDVI-derived vegetation distribution was used, while the second integration used the model's ?default? description of vegetation. The simulated near-surface climate was drastically altered by the introduction of NDVI-derived LAI, especially in the growing season, with the run in which observed LAI was assimilated producing, in general, a wetter and colder near-surface climate than the default run. A third model experiment was then carried out in which the (comparatively more homogeneous) spatial distribution of the LAI remained the same as in the ?default? run, but the overall, domain-averaged magnitude of the LAI was reduced to be consistent with that of NDVI-derived LAI. This third run simulated a drier and warmer near-surface climate compared to the default run. Taken together, these results indicate that regional climates are indeed sensitive to seasonal changes in vegetation phenology, and that they are especially sensitive to the land surface heterogeneity associated with vegetation cover. The need to realistically represent both the spatial and temporal distribution of vegetation in regional climate models is thus highlighted, and the value of assimilating remotely sensed measures of vegetation vigor in Four-Dimensional Data Assimilation (4DDA) systems is demonstrated.
    • Download: (4.992Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Incorporating NDVI-Derived LAI into the Climate Version of RAMS and Its Impact on Regional Climate

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206220
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorLu, Lixin
    contributor authorShuttleworth, W. James
    date accessioned2017-06-09T16:17:15Z
    date available2017-06-09T16:17:15Z
    date copyright2002/06/01
    date issued2002
    identifier issn1525-755X
    identifier otherams-65039.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206220
    description abstractIn this study, a climate version of the Regional Atmospheric Modeling System (ClimRAMS) was used to investigate the sensitivity of regional climate simulations to changes in vegetation distribution in the Great Plains and Rocky Mountain regions of the United States. The evolution of vegetation phenology was assimilated into the ClimRAMS in the form of estimates of the leaf area index (LAI) derived from the normalized difference vegetation index (NDVI). Initially, two model integrations were made. In the first, the NDVI-derived vegetation distribution was used, while the second integration used the model's ?default? description of vegetation. The simulated near-surface climate was drastically altered by the introduction of NDVI-derived LAI, especially in the growing season, with the run in which observed LAI was assimilated producing, in general, a wetter and colder near-surface climate than the default run. A third model experiment was then carried out in which the (comparatively more homogeneous) spatial distribution of the LAI remained the same as in the ?default? run, but the overall, domain-averaged magnitude of the LAI was reduced to be consistent with that of NDVI-derived LAI. This third run simulated a drier and warmer near-surface climate compared to the default run. Taken together, these results indicate that regional climates are indeed sensitive to seasonal changes in vegetation phenology, and that they are especially sensitive to the land surface heterogeneity associated with vegetation cover. The need to realistically represent both the spatial and temporal distribution of vegetation in regional climate models is thus highlighted, and the value of assimilating remotely sensed measures of vegetation vigor in Four-Dimensional Data Assimilation (4DDA) systems is demonstrated.
    publisherAmerican Meteorological Society
    titleIncorporating NDVI-Derived LAI into the Climate Version of RAMS and Its Impact on Regional Climate
    typeJournal Paper
    journal volume3
    journal issue3
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/1525-7541(2002)003<0347:INDLIT>2.0.CO;2
    journal fristpage347
    journal lastpage362
    treeJournal of Hydrometeorology:;2002:;Volume( 003 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian