YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Hydrometeorology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Calibrating a Land Surface Model of Varying Complexity Using Multicriteria Methods and the Cabauw Dataset

    Source: Journal of Hydrometeorology:;2002:;Volume( 003 ):;issue: 002::page 181
    Author:
    Xia, Y.
    ,
    Pitman, A. J.
    ,
    Gupta, H. V.
    ,
    Leplastrier, M.
    ,
    Henderson-Sellers, A.
    ,
    Bastidas, L. A.
    DOI: 10.1175/1525-7541(2002)003<0181:CALSMO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The multicriteria methodology, which provides a means to estimate optimal ranges for land surface model parameter values via calibration, is evaluated. Following calibration, differences between schemes resulting from effective parameter values can be isolated from differences resulting from scheme structure or scheme parameterizations. The method is applied to the Project for the Intercomparison of Land Surface Parameterization Schemes (PILPS) phase-2a data from the Cabauw site in the Netherlands using the Chameleon Surface Model (CHASM) as the surrogate for a range of land surface schemes. Simulations are performed calibrating six modes of CHASM, representing a range of land surface complexity, against observed net radiation and latent and sensible heat fluxes. The six modes range from a simple bucket model to a complex mosaic-type structure with separate energy balances for each mosaic tile and explicit treatment of transpiration, canopy interception, and bare-ground evaporation. Results demonstrate that the performance of CHASM depends on the complexity of the representation of the surface energy balance. If the multicriteria method is used with two observed variables, the performance of the model improves little with incremental increases in complexity until the most complex version of the model is reached. If the multicriteria method is used with three observed variables, the most complex mode is shown to calibrate more accurately and more precisely than the simple modes. In all cases, every calibrated mode performs better than simulations using the default PILPS phase-2a parameters. The performance of the most complex mode of CHASM suggests that more complex representations of the surface energy balance generally improve the calibrated performance of land surface schemes. However, all modes, when calibrated, retain a residual error that most likely is due to parameterization errors included in the scheme. Most error is contained in the simulation of the latent heat flux, which suggests that, to improve CHASM further, the representation of the surface hydrological processes should be developed. Thus, the multicriteria method provides a means to assess the performance of a single model or group of land surface models and provides guidance as to the directions scheme development should take.
    • Download: (407.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Calibrating a Land Surface Model of Varying Complexity Using Multicriteria Methods and the Cabauw Dataset

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206206
    Collections
    • Journal of Hydrometeorology

    Show full item record

    contributor authorXia, Y.
    contributor authorPitman, A. J.
    contributor authorGupta, H. V.
    contributor authorLeplastrier, M.
    contributor authorHenderson-Sellers, A.
    contributor authorBastidas, L. A.
    date accessioned2017-06-09T16:17:13Z
    date available2017-06-09T16:17:13Z
    date copyright2002/04/01
    date issued2002
    identifier issn1525-755X
    identifier otherams-65026.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206206
    description abstractThe multicriteria methodology, which provides a means to estimate optimal ranges for land surface model parameter values via calibration, is evaluated. Following calibration, differences between schemes resulting from effective parameter values can be isolated from differences resulting from scheme structure or scheme parameterizations. The method is applied to the Project for the Intercomparison of Land Surface Parameterization Schemes (PILPS) phase-2a data from the Cabauw site in the Netherlands using the Chameleon Surface Model (CHASM) as the surrogate for a range of land surface schemes. Simulations are performed calibrating six modes of CHASM, representing a range of land surface complexity, against observed net radiation and latent and sensible heat fluxes. The six modes range from a simple bucket model to a complex mosaic-type structure with separate energy balances for each mosaic tile and explicit treatment of transpiration, canopy interception, and bare-ground evaporation. Results demonstrate that the performance of CHASM depends on the complexity of the representation of the surface energy balance. If the multicriteria method is used with two observed variables, the performance of the model improves little with incremental increases in complexity until the most complex version of the model is reached. If the multicriteria method is used with three observed variables, the most complex mode is shown to calibrate more accurately and more precisely than the simple modes. In all cases, every calibrated mode performs better than simulations using the default PILPS phase-2a parameters. The performance of the most complex mode of CHASM suggests that more complex representations of the surface energy balance generally improve the calibrated performance of land surface schemes. However, all modes, when calibrated, retain a residual error that most likely is due to parameterization errors included in the scheme. Most error is contained in the simulation of the latent heat flux, which suggests that, to improve CHASM further, the representation of the surface hydrological processes should be developed. Thus, the multicriteria method provides a means to assess the performance of a single model or group of land surface models and provides guidance as to the directions scheme development should take.
    publisherAmerican Meteorological Society
    titleCalibrating a Land Surface Model of Varying Complexity Using Multicriteria Methods and the Cabauw Dataset
    typeJournal Paper
    journal volume3
    journal issue2
    journal titleJournal of Hydrometeorology
    identifier doi10.1175/1525-7541(2002)003<0181:CALSMO>2.0.CO;2
    journal fristpage181
    journal lastpage194
    treeJournal of Hydrometeorology:;2002:;Volume( 003 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian