YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Causes of Long-Term Drought in the U.S. Great Plains

    Source: Journal of Climate:;2004:;volume( 017 ):;issue: 003::page 485
    Author:
    Schubert, Siegfried D.
    ,
    Suarez, Max J.
    ,
    Pegion, Philip J.
    ,
    Koster, Randal D.
    ,
    Bacmeister, Julio T.
    DOI: 10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The U.S. Great Plains experienced a number of multiyear droughts during the last century, most notably the droughts of the 1930s and 1950s. This study examines the causes of such droughts using ensembles of long-term (1930?2000) simulations carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTs). The results show that the model produces long-term (multiyear) variations in precipitation in the Great Plains region (30°?50°N, 95°?105°W) that are similar to those observed. A correlative analysis suggests that the ensemble-mean low-frequency (time scales longer than about 6 yr) rainfall variations in the Great Plains are linked to a pan-Pacific pattern of SST variability that is the leading empirical orthogonal function (EOF) in the low-frequency SST data. The link between the SST and the Great Plains precipitation is confirmed in idealized AGCM simulations, in which the model is forced by the two polarities of the pan-Pacific SST pattern. The idealized simulations further show that it is primarily the tropical part of the SST anomalies that influences the Great Plains. As such, the Great Plains tend to have above-normal precipitation when the tropical Pacific SSTs are above normal, while there is a tendency for drought when the tropical SSTs are cold. The upper-tropospheric response to the pan-Pacific SST EOF shows a global-scale pattern with a strong wave response in the Pacific and a substantial zonally symmetric component in which U.S. Great Plains pluvial (drought) conditions are associated with reduced (enhanced) heights throughout the extratropics. The potential predictability of rainfall in the Great Plains associated with SSTs is rather modest, with about one-third of the total low-frequency rainfall variance being forced by SST anomalies. Further idealized experiments with climatological SST suggest that the remaining low-frequency variance in the Great Plains precipitation is the result of interactions with soil moisture. In particular, simulations with soil moisture feedback show a fivefold increase in the variance in annual Great Plains precipitation compared with simulations in which the soil feedback is excluded. In addition to increasing variance, the interactions with the soil introduce a year-to-year memory in the hydrological cycle. The impact of soil memory is consistent with a red noise process, in which the deep soil is forced by white noise and damped with a time scale of about 1.5 yr. As such, the role of low-frequency SST variability is to introduce a bias to the net forcing on the soil moisture that drives the random process preferentially to either wet or dry conditions.
    • Download: (2.792Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Causes of Long-Term Drought in the U.S. Great Plains

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4206179
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSchubert, Siegfried D.
    contributor authorSuarez, Max J.
    contributor authorPegion, Philip J.
    contributor authorKoster, Randal D.
    contributor authorBacmeister, Julio T.
    date accessioned2017-06-09T16:17:09Z
    date available2017-06-09T16:17:09Z
    date copyright2004/02/01
    date issued2004
    identifier issn0894-8755
    identifier otherams-6500.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4206179
    description abstractThe U.S. Great Plains experienced a number of multiyear droughts during the last century, most notably the droughts of the 1930s and 1950s. This study examines the causes of such droughts using ensembles of long-term (1930?2000) simulations carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTs). The results show that the model produces long-term (multiyear) variations in precipitation in the Great Plains region (30°?50°N, 95°?105°W) that are similar to those observed. A correlative analysis suggests that the ensemble-mean low-frequency (time scales longer than about 6 yr) rainfall variations in the Great Plains are linked to a pan-Pacific pattern of SST variability that is the leading empirical orthogonal function (EOF) in the low-frequency SST data. The link between the SST and the Great Plains precipitation is confirmed in idealized AGCM simulations, in which the model is forced by the two polarities of the pan-Pacific SST pattern. The idealized simulations further show that it is primarily the tropical part of the SST anomalies that influences the Great Plains. As such, the Great Plains tend to have above-normal precipitation when the tropical Pacific SSTs are above normal, while there is a tendency for drought when the tropical SSTs are cold. The upper-tropospheric response to the pan-Pacific SST EOF shows a global-scale pattern with a strong wave response in the Pacific and a substantial zonally symmetric component in which U.S. Great Plains pluvial (drought) conditions are associated with reduced (enhanced) heights throughout the extratropics. The potential predictability of rainfall in the Great Plains associated with SSTs is rather modest, with about one-third of the total low-frequency rainfall variance being forced by SST anomalies. Further idealized experiments with climatological SST suggest that the remaining low-frequency variance in the Great Plains precipitation is the result of interactions with soil moisture. In particular, simulations with soil moisture feedback show a fivefold increase in the variance in annual Great Plains precipitation compared with simulations in which the soil feedback is excluded. In addition to increasing variance, the interactions with the soil introduce a year-to-year memory in the hydrological cycle. The impact of soil memory is consistent with a red noise process, in which the deep soil is forced by white noise and damped with a time scale of about 1.5 yr. As such, the role of low-frequency SST variability is to introduce a bias to the net forcing on the soil moisture that drives the random process preferentially to either wet or dry conditions.
    publisherAmerican Meteorological Society
    titleCauses of Long-Term Drought in the U.S. Great Plains
    typeJournal Paper
    journal volume17
    journal issue3
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2
    journal fristpage485
    journal lastpage503
    treeJournal of Climate:;2004:;volume( 017 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian