YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A 15-Year Climatology of Warm Conveyor Belts

    Source: Journal of Climate:;2004:;volume( 017 ):;issue: 001::page 218
    Author:
    Eckhardt, Sabine
    ,
    Stohl, Andreas
    ,
    Wernli, Heini
    ,
    James, Paul
    ,
    Forster, Caroline
    ,
    Spichtinger, Nicole
    DOI: 10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: This study presents the first climatology of so-called warm conveyor belts (WCBs), strongly ascending moist airstreams in extratropical cyclones that, on the time scale of 2 days, rise from the boundary layer to the upper troposphere. The climatology was constructed by using 15 yr (1979?93) of reanalysis data and calculating 355 million trajectories starting daily from a 1° ? 1° global grid at 500 m above ground level (AGL). WCBs were defined as those trajectories that, during a period of 2 days, traveled northeastward and ascended by at least 60% of the zonally and climatologically averaged tropopause height. The mean specific humidity at WCB starting points in different regions varies from 7 to 12 g kg?1. This moisture is almost entirely precipitated out, leading to an increase of potential temperature of 15?22 K along a WCB trajectory. Over the course of 3 days, a WCB trajectory produces, on average, about four (six) times as much precipitation as a global (extratropical) average trajectory starting from 500 m AGL. WCB starting points are most frequently located between approximately 25° and 45°N and between about 20° and 45°S. In the Northern Hemisphere (NH), there are two distinct frequency maxima east of North America and east of Asia, whereas there is much less zonal variability in the Southern Hemisphere (SH). In the NH, WCBs are almost an order of magnitude more frequent in January than in July, whereas in the SH the seasonal variation is much weaker. In order to study the relationship between WCBs and cyclones, an independent cyclone climatology was used. Most of the WCBs were found in the vicinity of a cyclone center, whereas the reverse comparison revealed that cyclones are normally accompanied by a strong WCB only in the NH winter. In the SH, this is not the case throughout the year. Particularly around Antarctica, where cyclones are globally most frequent, practically no strong WCBs are found. These cyclones are less influenced by diabatic processes and, thus, they are associated with fewer high clouds and less precipitation than cyclones in other regions. In winter, there is a highly significant correlation between the North Atlantic Oscillation (NAO) and the WCB distribution in the North Atlantic: In months with a high NAO index, WCBs are about 12% more frequent and their outflow occurs about 10° latitude farther north and 20° longitude farther east than in months with a low NAO index. The differences in the WCB inflow regions are relatively small between the two NAO phases. During high phases of the Southern Oscillation, WCBs occur more (less) frequent around Australia (in the South Atlantic).
    • Download: (2.890Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A 15-Year Climatology of Warm Conveyor Belts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4205967
    Collections
    • Journal of Climate

    Show full item record

    contributor authorEckhardt, Sabine
    contributor authorStohl, Andreas
    contributor authorWernli, Heini
    contributor authorJames, Paul
    contributor authorForster, Caroline
    contributor authorSpichtinger, Nicole
    date accessioned2017-06-09T16:16:40Z
    date available2017-06-09T16:16:40Z
    date copyright2004/01/01
    date issued2004
    identifier issn0894-8755
    identifier otherams-6481.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205967
    description abstractThis study presents the first climatology of so-called warm conveyor belts (WCBs), strongly ascending moist airstreams in extratropical cyclones that, on the time scale of 2 days, rise from the boundary layer to the upper troposphere. The climatology was constructed by using 15 yr (1979?93) of reanalysis data and calculating 355 million trajectories starting daily from a 1° ? 1° global grid at 500 m above ground level (AGL). WCBs were defined as those trajectories that, during a period of 2 days, traveled northeastward and ascended by at least 60% of the zonally and climatologically averaged tropopause height. The mean specific humidity at WCB starting points in different regions varies from 7 to 12 g kg?1. This moisture is almost entirely precipitated out, leading to an increase of potential temperature of 15?22 K along a WCB trajectory. Over the course of 3 days, a WCB trajectory produces, on average, about four (six) times as much precipitation as a global (extratropical) average trajectory starting from 500 m AGL. WCB starting points are most frequently located between approximately 25° and 45°N and between about 20° and 45°S. In the Northern Hemisphere (NH), there are two distinct frequency maxima east of North America and east of Asia, whereas there is much less zonal variability in the Southern Hemisphere (SH). In the NH, WCBs are almost an order of magnitude more frequent in January than in July, whereas in the SH the seasonal variation is much weaker. In order to study the relationship between WCBs and cyclones, an independent cyclone climatology was used. Most of the WCBs were found in the vicinity of a cyclone center, whereas the reverse comparison revealed that cyclones are normally accompanied by a strong WCB only in the NH winter. In the SH, this is not the case throughout the year. Particularly around Antarctica, where cyclones are globally most frequent, practically no strong WCBs are found. These cyclones are less influenced by diabatic processes and, thus, they are associated with fewer high clouds and less precipitation than cyclones in other regions. In winter, there is a highly significant correlation between the North Atlantic Oscillation (NAO) and the WCB distribution in the North Atlantic: In months with a high NAO index, WCBs are about 12% more frequent and their outflow occurs about 10° latitude farther north and 20° longitude farther east than in months with a low NAO index. The differences in the WCB inflow regions are relatively small between the two NAO phases. During high phases of the Southern Oscillation, WCBs occur more (less) frequent around Australia (in the South Atlantic).
    publisherAmerican Meteorological Society
    titleA 15-Year Climatology of Warm Conveyor Belts
    typeJournal Paper
    journal volume17
    journal issue1
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2
    journal fristpage218
    journal lastpage237
    treeJournal of Climate:;2004:;volume( 017 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian