YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Abnormal Indian Summer Monsoon of 2000

    Source: Journal of Climate:;2003:;volume( 016 ):;issue: 008::page 1177
    Author:
    Krishnan, R.
    ,
    Mujumdar, M.
    ,
    Vaidya, V.
    ,
    Ramesh, K. V.
    ,
    Satyan, V.
    DOI: 10.1175/1520-0442(2003)16<1177:TAISMO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Diagnostic analysis of observations and a series of ensemble simulations using an atmospheric general circulation model (GCM) have been carried out with a view to understanding the processes responsible for the widespread suppression of the seasonal summer monsoon rainfall over the Indian subcontinent in 2000. During this period, the equatorial and southern tropical Indian Ocean (EQSIO) was characterized by persistent warmer than normal sea surface temperature (SST), increased atmospheric moisture convergence, and enhanced precipitation. These abnormal conditions not only offered an ideal prototype of the regional convective anomalies over the subcontinent and Indian Ocean, but also provided a basis for investigating the causes for the intensification and maintenance of the seasonal anomaly patterns. The findings of this study reveal that the strengthening of the convective activity over the region of the southern equatorial trough played a key role in inducing anomalous subsidence over the subcontinent and thereby weakened the monsoon Hadley cell. The leading empirical orthogonal function (EOF) of the intraseasonal variability of observed rainfall was characterized by a north?south asymmetric pattern of negative anomaly over India and positive anomaly over the region of the EQSIO and accounted for about 21% of the total rainfall variance during 2000. The GCM-simulated response to forcing by SST anomalies during 2000 is found to be consistent with observations in reasonably capturing the seasonal monsoon anomalies and the intraseasonal variability. Further, it is shown from the GCM experiments that the warm Indian Ocean (IO) SST anomalies influenced the regional intraseasonal variability in a significant manner by favoring higher probability of occurrence of enhanced rainfall activity over the EQSIO region and, in turn, led to higher probability of occurrence of dry spells and prolonged break-monsoon conditions over the subcontinent. In particular, the simulated break-monsoon anomaly pattern of decreased rainfall over the subcontinent and increased rainfall over the EQSIO is shown to intensify and persist in response to the IO SST anomalies during 2000. These results clearly bring out the significance of the IO SST anomalies in altering the regional intraseasonal variability and thereby affecting the seasonal mean monsoon. Further studies will be required in order to investigate the detailed physical mechanisms that couple the variability of convection over the IO region with the local SST boundary forcing and the large-scale monsoon dynamics.
    • Download: (1.335Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Abnormal Indian Summer Monsoon of 2000

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4205567
    Collections
    • Journal of Climate

    Show full item record

    contributor authorKrishnan, R.
    contributor authorMujumdar, M.
    contributor authorVaidya, V.
    contributor authorRamesh, K. V.
    contributor authorSatyan, V.
    date accessioned2017-06-09T16:15:52Z
    date available2017-06-09T16:15:52Z
    date copyright2003/04/01
    date issued2003
    identifier issn0894-8755
    identifier otherams-6445.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205567
    description abstractDiagnostic analysis of observations and a series of ensemble simulations using an atmospheric general circulation model (GCM) have been carried out with a view to understanding the processes responsible for the widespread suppression of the seasonal summer monsoon rainfall over the Indian subcontinent in 2000. During this period, the equatorial and southern tropical Indian Ocean (EQSIO) was characterized by persistent warmer than normal sea surface temperature (SST), increased atmospheric moisture convergence, and enhanced precipitation. These abnormal conditions not only offered an ideal prototype of the regional convective anomalies over the subcontinent and Indian Ocean, but also provided a basis for investigating the causes for the intensification and maintenance of the seasonal anomaly patterns. The findings of this study reveal that the strengthening of the convective activity over the region of the southern equatorial trough played a key role in inducing anomalous subsidence over the subcontinent and thereby weakened the monsoon Hadley cell. The leading empirical orthogonal function (EOF) of the intraseasonal variability of observed rainfall was characterized by a north?south asymmetric pattern of negative anomaly over India and positive anomaly over the region of the EQSIO and accounted for about 21% of the total rainfall variance during 2000. The GCM-simulated response to forcing by SST anomalies during 2000 is found to be consistent with observations in reasonably capturing the seasonal monsoon anomalies and the intraseasonal variability. Further, it is shown from the GCM experiments that the warm Indian Ocean (IO) SST anomalies influenced the regional intraseasonal variability in a significant manner by favoring higher probability of occurrence of enhanced rainfall activity over the EQSIO region and, in turn, led to higher probability of occurrence of dry spells and prolonged break-monsoon conditions over the subcontinent. In particular, the simulated break-monsoon anomaly pattern of decreased rainfall over the subcontinent and increased rainfall over the EQSIO is shown to intensify and persist in response to the IO SST anomalies during 2000. These results clearly bring out the significance of the IO SST anomalies in altering the regional intraseasonal variability and thereby affecting the seasonal mean monsoon. Further studies will be required in order to investigate the detailed physical mechanisms that couple the variability of convection over the IO region with the local SST boundary forcing and the large-scale monsoon dynamics.
    publisherAmerican Meteorological Society
    titleThe Abnormal Indian Summer Monsoon of 2000
    typeJournal Paper
    journal volume16
    journal issue8
    journal titleJournal of Climate
    identifier doi10.1175/1520-0442(2003)16<1177:TAISMO>2.0.CO;2
    journal fristpage1177
    journal lastpage1194
    treeJournal of Climate:;2003:;volume( 016 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian