YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Clustering Methods for Statistical Downscaling in Short-Range Weather Forecasts

    Source: Monthly Weather Review:;2004:;volume( 132 ):;issue: 009::page 2169
    Author:
    Gutiérrez, J. M.
    ,
    Cofiño, A. S.
    ,
    Cano, R.
    ,
    Rodríguez, M. A.
    DOI: 10.1175/1520-0493(2004)132<2169:CMFSDI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In this paper an application of clustering algorithms for statistical downscaling in short-range weather forecasts is presented. The advantages of this technique compared with standard nearest-neighbors analog methods are described both in terms of computational efficiency and forecast skill. Some validation results of daily precipitation and maximum wind speed operative downscaling (lead time 1?5 days) on a network of 100 stations in the Iberian Peninsula are reported for the period 1998?99. These results indicate that the weighting clustering method introduced in this paper clearly outperforms standard analog techniques for infrequent, or extreme, events (precipitation > 20 mm; wind > 80 km h?1). Outputs of an operative circulation model on different local-area or large-scale grids are considered to characterize the atmospheric circulation patterns, and the skill of both alternatives is compared.
    • Download: (2.908Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Clustering Methods for Statistical Downscaling in Short-Range Weather Forecasts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4205437
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorGutiérrez, J. M.
    contributor authorCofiño, A. S.
    contributor authorCano, R.
    contributor authorRodríguez, M. A.
    date accessioned2017-06-09T16:15:37Z
    date available2017-06-09T16:15:37Z
    date copyright2004/09/01
    date issued2004
    identifier issn0027-0644
    identifier otherams-64334.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205437
    description abstractIn this paper an application of clustering algorithms for statistical downscaling in short-range weather forecasts is presented. The advantages of this technique compared with standard nearest-neighbors analog methods are described both in terms of computational efficiency and forecast skill. Some validation results of daily precipitation and maximum wind speed operative downscaling (lead time 1?5 days) on a network of 100 stations in the Iberian Peninsula are reported for the period 1998?99. These results indicate that the weighting clustering method introduced in this paper clearly outperforms standard analog techniques for infrequent, or extreme, events (precipitation > 20 mm; wind > 80 km h?1). Outputs of an operative circulation model on different local-area or large-scale grids are considered to characterize the atmospheric circulation patterns, and the skill of both alternatives is compared.
    publisherAmerican Meteorological Society
    titleClustering Methods for Statistical Downscaling in Short-Range Weather Forecasts
    typeJournal Paper
    journal volume132
    journal issue9
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2004)132<2169:CMFSDI>2.0.CO;2
    journal fristpage2169
    journal lastpage2183
    treeMonthly Weather Review:;2004:;volume( 132 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian