YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulation of the Interaction between the Dryline and Horizontal Convective Rolls

    Source: Monthly Weather Review:;2004:;volume( 132 ):;issue: 007::page 1792
    Author:
    Peckham, Steven E.
    ,
    Wilhelmson, Robert B.
    ,
    Wicker, Louis J.
    ,
    Ziegler, Conrad L.
    DOI: 10.1175/1520-0493(2004)132<1792:NSOTIB>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The results of high-resolution simulations of an idealized dryline environment are discussed. The use of a single high-resolution domain, combined with accurate advection numerics and minimized numerical filtering, allows the explicit resolution of large horizontal convective roll (HCR) circulations and their daytime evolution. The horizontal convective rolls are oriented in the direction of the lower planetary boundary layer (PBL) wind shear. By midafternoon a north?south-oriented dryline develops near the center of the simulation domain with the PBL circulations from both sides intersecting the dryline at multiple locations. West of the dryline, the HCR bands evolve into open convective cell (OCC) structures having stronger and deeper vertical circulations compared to the OCCs and HCRs to the east. The OCCs and HCRs east of the dryline impact the dryline and convective cloud location by modulating the low-level moisture and upslope easterly flow. The interaction between OCC and HCR circulations and the dryline appears primarily responsible for creating a considerable amount of along-line variation in the dryline characteristics. Many shallow convective clouds develop along and west of the dryline over the OCC and HCR updrafts as well as OCC?dryline and HCR?dryline intersection points. The shallow convective clouds evolve into deep convective clouds where OCCs and HCRs to the east intersect the dryline near the same location. When the cumulus clouds move to the east of the dryline and remain over an OCC/HCR updraft, the persistent low-level lifting permits the convective updraft to overcome the cap east of the dryline and directly lift near-surface moisture to its level of free convection.
    • Download: (8.989Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulation of the Interaction between the Dryline and Horizontal Convective Rolls

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4205410
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorPeckham, Steven E.
    contributor authorWilhelmson, Robert B.
    contributor authorWicker, Louis J.
    contributor authorZiegler, Conrad L.
    date accessioned2017-06-09T16:15:30Z
    date available2017-06-09T16:15:30Z
    date copyright2004/07/01
    date issued2004
    identifier issn0027-0644
    identifier otherams-64310.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205410
    description abstractThe results of high-resolution simulations of an idealized dryline environment are discussed. The use of a single high-resolution domain, combined with accurate advection numerics and minimized numerical filtering, allows the explicit resolution of large horizontal convective roll (HCR) circulations and their daytime evolution. The horizontal convective rolls are oriented in the direction of the lower planetary boundary layer (PBL) wind shear. By midafternoon a north?south-oriented dryline develops near the center of the simulation domain with the PBL circulations from both sides intersecting the dryline at multiple locations. West of the dryline, the HCR bands evolve into open convective cell (OCC) structures having stronger and deeper vertical circulations compared to the OCCs and HCRs to the east. The OCCs and HCRs east of the dryline impact the dryline and convective cloud location by modulating the low-level moisture and upslope easterly flow. The interaction between OCC and HCR circulations and the dryline appears primarily responsible for creating a considerable amount of along-line variation in the dryline characteristics. Many shallow convective clouds develop along and west of the dryline over the OCC and HCR updrafts as well as OCC?dryline and HCR?dryline intersection points. The shallow convective clouds evolve into deep convective clouds where OCCs and HCRs to the east intersect the dryline near the same location. When the cumulus clouds move to the east of the dryline and remain over an OCC/HCR updraft, the persistent low-level lifting permits the convective updraft to overcome the cap east of the dryline and directly lift near-surface moisture to its level of free convection.
    publisherAmerican Meteorological Society
    titleNumerical Simulation of the Interaction between the Dryline and Horizontal Convective Rolls
    typeJournal Paper
    journal volume132
    journal issue7
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2004)132<1792:NSOTIB>2.0.CO;2
    journal fristpage1792
    journal lastpage1812
    treeMonthly Weather Review:;2004:;volume( 132 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian