YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mean State and Wave Disturbances during Phases I, II, and III of GATE Based on ERA-40

    Source: Monthly Weather Review:;2004:;volume( 132 ):;issue: 007::page 1661
    Author:
    Fink, A. H.
    ,
    Vincent, D. G.
    ,
    Reiner, P. M.
    ,
    Speth, P.
    DOI: 10.1175/1520-0493(2004)132<1661:MSAWDD>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Using ECMWF's second-generation reanalysis, ERA-40, the large-scale mean state and synoptic-scale features associated with African easterly wave disturbances (AEWs) are examined over West Africa and the adjacent eastern Atlantic Ocean during the three 21-day observing periods of the Global Atmospheric Research Program (GARP) Atlantic Tropical Experiment (GATE) in 1974 (Phase I, 26 June?16 July; Phase II, 28 July?17 August; Phase III, 30 August?19 September). Results are partitioned into four geographical boxes, in order to highlight differences among the AEW vortices as they propagate westward along two tracks (northern and southern) over West Africa (land) and the adjacent eastern Atlantic Ocean (water). This marks the first time that a detailed diagnosis of the northerly track AEWs has been conducted. Results are also compared to previous GATE studies and a 30-yr climatology is extracted from ERA-40. In general, the subjectively analyzed wind fields presented in earlier studies compare favorably with the ERA-40 horizontal wind fields. The vertical motion field is one of the parameters that shows the largest differences to previously published results. In the area of the GATE A?B-scale ship array in the eastern Atlantic Ocean, low-level ascent during GATE is twice as large as in the ERA-40 climatology, most likely due to the dense upper-air network that allowed for an exceptionally good analysis of the divergent wind field. The midtropospheric outflow layer found over the ship array is absent in the ERA-40 climatology. Detrimental to the ERA-40 analyses of the upper-level easterly jet over the central Gulf of Guinea and along parts of the Guinea coast, were the assimilation of erroneous aircraft data. Using a recently developed tracking method of midtropospheric African easterly waves, a complete tracking history of northerly and southerly AEW vortices is presented and discussed for all three phases of GATE. One important result is that the activity of the northern waves at about 20°N was, in contrast to the southern waves at about 9°N, already quite strong during Phase I. At the same time, the low-level monsoonal flow, the heat low, and the upward motion in the northern desert zone were strongest. In contrast, the midtropospheric African easterly jet (AEJ) and the related horizontal shear instabilities were strongest during Phase III. The AEJ is also found at the lowest altitude over land during Phase III and it extends out to the Atlantic Ocean without changing its height and strength. These factors are associated with the well-known peak in the activity of AEWs in the southern wet zone during Phase III. In contrast to earlier findings, no reduction of AEW energy, by lifting of anomalously cool low-level air along the southern moist AEW track, could be observed over land.
    • Download: (6.596Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mean State and Wave Disturbances during Phases I, II, and III of GATE Based on ERA-40

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4205403
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorFink, A. H.
    contributor authorVincent, D. G.
    contributor authorReiner, P. M.
    contributor authorSpeth, P.
    date accessioned2017-06-09T16:15:29Z
    date available2017-06-09T16:15:29Z
    date copyright2004/07/01
    date issued2004
    identifier issn0027-0644
    identifier otherams-64303.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205403
    description abstractUsing ECMWF's second-generation reanalysis, ERA-40, the large-scale mean state and synoptic-scale features associated with African easterly wave disturbances (AEWs) are examined over West Africa and the adjacent eastern Atlantic Ocean during the three 21-day observing periods of the Global Atmospheric Research Program (GARP) Atlantic Tropical Experiment (GATE) in 1974 (Phase I, 26 June?16 July; Phase II, 28 July?17 August; Phase III, 30 August?19 September). Results are partitioned into four geographical boxes, in order to highlight differences among the AEW vortices as they propagate westward along two tracks (northern and southern) over West Africa (land) and the adjacent eastern Atlantic Ocean (water). This marks the first time that a detailed diagnosis of the northerly track AEWs has been conducted. Results are also compared to previous GATE studies and a 30-yr climatology is extracted from ERA-40. In general, the subjectively analyzed wind fields presented in earlier studies compare favorably with the ERA-40 horizontal wind fields. The vertical motion field is one of the parameters that shows the largest differences to previously published results. In the area of the GATE A?B-scale ship array in the eastern Atlantic Ocean, low-level ascent during GATE is twice as large as in the ERA-40 climatology, most likely due to the dense upper-air network that allowed for an exceptionally good analysis of the divergent wind field. The midtropospheric outflow layer found over the ship array is absent in the ERA-40 climatology. Detrimental to the ERA-40 analyses of the upper-level easterly jet over the central Gulf of Guinea and along parts of the Guinea coast, were the assimilation of erroneous aircraft data. Using a recently developed tracking method of midtropospheric African easterly waves, a complete tracking history of northerly and southerly AEW vortices is presented and discussed for all three phases of GATE. One important result is that the activity of the northern waves at about 20°N was, in contrast to the southern waves at about 9°N, already quite strong during Phase I. At the same time, the low-level monsoonal flow, the heat low, and the upward motion in the northern desert zone were strongest. In contrast, the midtropospheric African easterly jet (AEJ) and the related horizontal shear instabilities were strongest during Phase III. The AEJ is also found at the lowest altitude over land during Phase III and it extends out to the Atlantic Ocean without changing its height and strength. These factors are associated with the well-known peak in the activity of AEWs in the southern wet zone during Phase III. In contrast to earlier findings, no reduction of AEW energy, by lifting of anomalously cool low-level air along the southern moist AEW track, could be observed over land.
    publisherAmerican Meteorological Society
    titleMean State and Wave Disturbances during Phases I, II, and III of GATE Based on ERA-40
    typeJournal Paper
    journal volume132
    journal issue7
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2004)132<1661:MSAWDD>2.0.CO;2
    journal fristpage1661
    journal lastpage1683
    treeMonthly Weather Review:;2004:;volume( 132 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian