YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    •   YE&T Library
    • AMS
    • Monthly Weather Review
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Numerical Investigation of Storm Structure and Evolution during the July 1999 Las Vegas Flash Flood

    Source: Monthly Weather Review:;2003:;volume( 131 ):;issue: 009::page 2038
    Author:
    Li, J.
    ,
    Maddox, R. A.
    ,
    Gao, X.
    ,
    Sorooshian, S.
    ,
    Hsu, K.
    DOI: 10.1175/1520-0493(2003)131<2038:ANIOSS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Severe flash flood storms that occurred in Las Vegas, Nevada, on 8 July 1999, were unusual for the semiarid southwest United States because of their extreme intensity and the morning occurrence of heavy convective rainfall. This event was simulated using the high-resolution Regional Atmospheric Modeling System (RAMS), and convective rainfall, storm cell processes, and thermodynamics were evaluated using Geostationary Operational Environmental Satellite (GOES) imagery and a variety of other observations. The simulation agreed reasonably well with the observations in a large-scale sense, but errors at small scales were significant. The storm's peak rainfalls were overestimated and had a 3-h timing delay. The primary forcing mechanism for storms in the simulation was clearly daytime surface heating along mountain slopes, and the actual trigger mechanism causing the morning convection, an outflow from nighttime storms to the northeast of Las Vegas, was not captured accurately. All simulated convective cells initiated over and propagated along mountain slopes; however, cloud images and observed rainfall cell tracks showed that several important storm cells developed over low-elevation areas of the Las Vegas valley, where a layer of fairly substantial convective inhibition persisted above the boundary layer in the simulation. The small-scale errors in timing, location, rain amounts, and characteristics of cell propagation would seriously affect the accuracy of streamflow forecasts if the RAMS simulated rainfall were used in hydrologic models. It remains to be seen if explicit storm-scale simulations can be improved to the point where they can drive operationally useful streamflow predictions for the semiarid southwest United States.
    • Download: (6.205Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Numerical Investigation of Storm Structure and Evolution during the July 1999 Las Vegas Flash Flood

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4205236
    Collections
    • Monthly Weather Review

    Show full item record

    contributor authorLi, J.
    contributor authorMaddox, R. A.
    contributor authorGao, X.
    contributor authorSorooshian, S.
    contributor authorHsu, K.
    date accessioned2017-06-09T16:15:03Z
    date available2017-06-09T16:15:03Z
    date copyright2003/09/01
    date issued2003
    identifier issn0027-0644
    identifier otherams-64153.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4205236
    description abstractSevere flash flood storms that occurred in Las Vegas, Nevada, on 8 July 1999, were unusual for the semiarid southwest United States because of their extreme intensity and the morning occurrence of heavy convective rainfall. This event was simulated using the high-resolution Regional Atmospheric Modeling System (RAMS), and convective rainfall, storm cell processes, and thermodynamics were evaluated using Geostationary Operational Environmental Satellite (GOES) imagery and a variety of other observations. The simulation agreed reasonably well with the observations in a large-scale sense, but errors at small scales were significant. The storm's peak rainfalls were overestimated and had a 3-h timing delay. The primary forcing mechanism for storms in the simulation was clearly daytime surface heating along mountain slopes, and the actual trigger mechanism causing the morning convection, an outflow from nighttime storms to the northeast of Las Vegas, was not captured accurately. All simulated convective cells initiated over and propagated along mountain slopes; however, cloud images and observed rainfall cell tracks showed that several important storm cells developed over low-elevation areas of the Las Vegas valley, where a layer of fairly substantial convective inhibition persisted above the boundary layer in the simulation. The small-scale errors in timing, location, rain amounts, and characteristics of cell propagation would seriously affect the accuracy of streamflow forecasts if the RAMS simulated rainfall were used in hydrologic models. It remains to be seen if explicit storm-scale simulations can be improved to the point where they can drive operationally useful streamflow predictions for the semiarid southwest United States.
    publisherAmerican Meteorological Society
    titleA Numerical Investigation of Storm Structure and Evolution during the July 1999 Las Vegas Flash Flood
    typeJournal Paper
    journal volume131
    journal issue9
    journal titleMonthly Weather Review
    identifier doi10.1175/1520-0493(2003)131<2038:ANIOSS>2.0.CO;2
    journal fristpage2038
    journal lastpage2059
    treeMonthly Weather Review:;2003:;volume( 131 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian